The Second Law implies:

Similar documents
å Q d = 0 T dq =0 ò T reversible processes 1

SIMPLE RANKINE CYCLE. 3 expander. boiler. pump. condenser 1 W Q. cycle cycle. net. shaft

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where

P=1 atm. vapor. liquid

4-93 RT RT. He PV n = C = = Then the boundary work for this polytropic process can be determined from. n =

KNOWN: Air undergoes a polytropic process in a piston-cylinder assembly. The work is known.

6-5. H 2 O 200 kpa 200 C Q. Entropy Changes of Pure Substances

Thermodynamics EAS 204 Spring 2004 Class Month Day Chapter Topic Reading Due 1 January 12 M Introduction 2 14 W Chapter 1 Concepts Chapter 1 19 M MLK

Developing Transfer Functions from Heat & Material Balances

The maximum heat transfer rate is for an infinite area counter flow heat exchanger.

(b) The heat transfer can be determined from an energy balance on the system

EF 152 Exam #3, Fall, 2012 Page 1 of 6

EF 152 Exam #3, Spring 2016 Page 1 of 6

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Calculation of Entropy Changes. Lecture 19

7-84. Chapter 7 External Forced Convection

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

Lecture 27: Entropy and Information Prof. WAN, Xin

Lecture 3 Heat Exchangers

CONVECTION IN MICROCHANNELS

NUCLEAR THERMAL-HYDRAULIC FUNDAMENTALS

Entropy and the Second Law of Thermodynamics

HCB-3 Edition. Solutions Chapter 12 Problems. SOLUTION: Refer to saturated steam table (Table A3-SI) and superheated steam table (Table A4-SI)

EVAPORATION. Robert evaporator. Balance equations Material balance (total) Component balance. Heat balance

Physics 231 Lecture 35

Physics 41 Chapter 22 HW

Basic Thermodynamic Relations

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1

AEROSPACE ENGINEERING GATE 2018 ANSWERS & EXPLANATIONS

SOLUTIONS FOR TUTORIAL QUESTIONS COURSE TEP Ideal motor speed = 1450rev/min x 12/120 = 145 rev/min

Effects of irreversible different parameters on performance of air standard dual-cycle

Instructions: Show all work for complete credit. Work in symbols first, plugging in numbers and performing calculations last. / 26.

Chapter 9 Compressible Flow 667

ESCI 341 Atmospheric Thermodynamics Lesson 11 The Second Law of Thermodynamics

MAE 110A. Homework 6: Solutions 11/9/2017

REVIEW SHEET 1 SOLUTIONS ( ) ( ) ( ) x 2 ( ) t + 2. t x +1. ( x 2 + x +1 + x 2 # x ) 2 +1 x ( 1 +1 x +1 x #1 x ) = 2 2 = 1

Chapter 7: The Second Law of Thermodynamics

LECTURE NOTE THERMODYNAMICS (GEC 221)

8:30 am 11:30 am 2:30 pm Prof. Memon Prof. Naik Prof. Lucht

NAME Borough of Manhattan Community College Course Physics 110 Sec 721 Instructor: Dr. Hulan E. Jack Jr. Date December 19, 2006

Lecture 38: Vapor-compression refrigeration systems

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Thermodynamics I Chapter 6 Entropy

Chapter 6. Using Entropy

Chapter 5: The First Law of Thermodynamics: Closed Systems

Exclusive Technology Feature. Eliminate The Guesswork When Selecting Primary Switch V DD Capacitors. ISSUE: May 2011

Given: Hot fluid oil, Cold fluid - water (T 1, T 2 ) (t 1, t 2 ) Water

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b

MAE320-HW7A. 1b). The entropy of an isolated system increases during a process. A). sometimes B). always C). never D).

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response.

ADARSHA H G. EDUSAT PROGRAMME 15 Turbomachines (Unit 3) Axial flow compressors and pumps

Maximum work for Carnot-like heat engines with infinite heat source

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Chapter 8 Sections 8.4 through 8.6 Internal Flow: Heat Transfer Correlations. In fully-developed region. Neglect axial conduction

Unit 12 Refrigeration and air standard cycles November 30, 2010

8-4 P 2. = 12 kw. AIR T = const. Therefore, Q &

Examples (Chapter )

ME 354 Tutorial, Week#5 Refrigeration Cycle A large refrigeration plant is to be maintained at -15 o C, and it requires refrigeration at a rate of

Thermodynamics Lecture Series

Application of Newton s Laws. F fr

MAE 11. Homework 8: Solutions 11/30/2018

CLAUSIUS INEQUALITY. PROOF: In Classroom

K E L LY T H O M P S O N

P a g e 5 1 of R e p o r t P B 4 / 0 9

Longitudinal Dispersion

( )( ) 7 MPa q in = = 10 kpa q out. 1 h. = s. Thus, and = 38.9% (b) (c) The rate of heat rejection to the cooling water and its temperature rise are

( ) Zp THE VIBRATION ABSORBER. Preamble - A NEED arises: lbf in. sec. X p () t = Z p. cos Ω t. Z p () r. ω np. F o. cos Ω t. X p. δ s.

SCHMIDT THEORY FOR STIRLING ENGINES

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

1 Fundamental Concepts From Algebra & Precalculus

ME 315 Exam 2 Wednesday, November 11, 2015 CIRCLE YOUR DIVISION

Physics 321 Solutions for Final Exam

Chapter 7. Principles of Unsteady - State and Convective Mass Transfer

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles

Chapter 7. Entropy: A Measure of Disorder

AAE COMBUSTION AND THERMOCHEMISTRY

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Previous lecture. Today lecture

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

2-18. (a) For mercury, (b) For water,

Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics.

KNOWN: Data are provided for a closed system undergoing a process involving work, heat transfer, change in elevation, and change in velocity.

Aircraft Performance - Drag

Digital Filter Specifications. Digital Filter Specifications. Digital Filter Design. Digital Filter Specifications. Digital Filter Specifications

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w

In the next lecture...

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

T Turbine 8. Boiler fwh fwh I Condenser 4 3 P II P I P III. (a) From the steam tables (Tables A-4, A-5, and A-6), = = 10 MPa. = 0.

Math Test No Calculator

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Today lecture. 1. Entropy change in an isolated system 2. Exergy

Outline. Property diagrams involving entropy. Heat transfer for internally reversible process

Psychrometrics. 1) Ideal Mixing 2) Ideal Gas Air 3) Ideal Gas Water Vapor 4) Adiabatic Saturation

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

Properties of Entropy

P a g e 3 6 of R e p o r t P B 4 / 0 9

Special Topic: Binary Vapor Cycles

Transcription:

e Send Law ilie: ) Heat Engine η W in H H L H L H, H H ) Ablute eerature H H L L Sale, L L W ) Fr a yle H H L L H 4) Fr an Ideal Ga Cyle H H L L L

δ reerible ree d

Claiu Inequality δ eerible Cyle fr a l l l l l l δ δ fr an Irreerible Cyle l l l l l l

Entry Definitin and Cange δ Claiu Inequality fr a yle ed f a reerible and an irreerible re δ δ S S irre DEFINE A POPEY, d irre irre irre d δ δ δ δ d irre d, re δ δ d S S, re ENOPY δ reerible irreerible

tal Entry Cange, S, fr an ilated yte Fr reerible yte, S Fr irreerile yte, S >

Liquid water enter an en feel water eater at.8 MPa and 5 C and tea enter at.8 MPa and 5 C. e leaing trea i aturated liquid at reure f.8 MPa. Deterine te rati ff te a flw rate f te water and tea. Deterine te rate at wi entry i rdued in te feed water eater.

@ tate int 7.87 6. 46.64 6. g S.896, S.94 Ma ( ) ( ) (.457 7.47).896(.457.55) S -.5.47 S.58 J/g K Balane Energy Balane PS5..94,.8 MPa 5 C.5 @ 5 C 46.64 J/g f f @ 5 C.55 J/g K.8 MPa, 5 C 6. 7.47.8 MPa 7.87 J/g f f @.8 MPa @.8 MPa.457 J/gK S.58 J/g K S, ( ).5.47

Cletely eerible Pre - Syte and urrunding returned t te riginal tate Internally eerible - Syte returned t te riginal tate. Externally eerible - Surrunding returned t te riginal tate.

eerature Entry Prerty Diagra d δ d nt W net in ut ( ) H L

eerature Entry Prerty Diagra Water

Entry Cange f an Ideal Ga d d d d d and d d Fr an idealga, d d d d - d d d d d d d d du d Subtituting int d d d du d d du d u fr definitin, d d d and d du Fr an idealga: d du d d du d SendLaw d δq Firt Law δw du δq

5) (7 V V @ V @ V (7-49) @ P @ P ntant,, Ientri re, r r r r

Oxygen at.8 ubi eter/g and 5 C i reed in a itn ylinder t. ubi eter/g and 87 C. Wat i te entry ange f te xygen? 87 C 5 C. /g.8 /g J.69 g K J.5 g K 7.5 K 87 7.5 K 5 C.59 C J g K. /g.8 /g 6-6

6- @ P Pa, C Cled, led tea radiatr @ 8 x S S f.8 g 7.566 J/g.9 g, f V S S fg C f x.8.9.47.9 fg.85 g ( ).85(.475 7.566) J.86 K.47 g.75.7 6.569 g 8 C.7 C Pa Vntant ntant

Stea at C and Pa ndene in a liter led radiatr wit bt te inlet and exit ale led t a teerature f 8 C.Deterine te entry ange f te tea. Cled, led tea radiatr C Pa Vnt @ P Pa, C.8 g 7.566 J/g @ 8 C f.9 g, g.47 g V V f.8.9 x.7 fg.47.9 x.75.7 6.569 f fg 8 C V..8 / g S S S S.85 J S S.86 K.85 ( ) (.475 7.566) g 6-

( ) ( ) ( ) ( ) i al ntant entry ntant adiabati re, ubtitute fr ntant n Ientri Adiabati Pre IdealGa Ientri, Adiabati ntant ntant integrating d _ d d d d d d d d d, ga an ideal fr d d δw du δ Adiabati re Law Firt δw du δ

U W Firt Law d du dw d ds dw dv ubitiuting, d du d u rerty definitin, i an exat differential d du d d ubitiuting, d d du d fr d d d Send Law Bundary Wr u rerty definitin d d d d d d w Exale: water ued fr ia t ia ( ) ( ia 5ia) 44f/i w 6.4lb/ft lbf 59 ft ft lbf w 69., (ft f fluid) lb 6.4 lb ft ft ft lbf BU w 69. 69.BU/lb lb 778 ft lb w.888 BU/lb Exale: water ued fr Pa t Pa w ( ) w.4 w.86 g ( ) Pa, f J/g

Exanin Pre η η η Atual Wr Ientri Wr w w a a

@Pa η W η ( W.9 g/e f tea exand in an 9 % effiient turbine fr 8 MPa, 5 C t Pa. Deterine te exit teerature and wer f te turbine. f 89..847 6. 67.9J/g W W x x ( 98. 67.9) W 98. 7.4 8.9 atural reereible i le tan aturatin fg ) g fg g 6.74.949 6.847 @ Pa (. bar) @ Pa (. bar).847 7.4J/g tw ae Pt 5 C 69. C Pwer W g/e 7.4J/g 5KW 8 MPa Pa Pa 98. 67.9 8.9 6.74 6.74 6-95

Wat i te wr dne by g/e f nitrgen exanded fr 9 Pa, 5 C t Pa at an 85% effiieny. 9 Pa 5 C W W atual atual ( 5 7)(.58) ientri i.857 i 9 i O i 7.4 K Watual η.85 W.85 g/e.9 99. J O ( K 7.4 K) i Pa

Crein Pre η η η Ientri Wr Atual Wr W W a a

. ubi eter/e f -4a i reed at 8% effiieny fr aturated ar at Pa t Ma. Wat i te diarge teerature and wr? @ Pa,.6.86J/g g g g.64 /g V./6.g/e.64 @MPa Pt 6 57.7 5 i 4.954J/g 9.6 88.9 8.9 77.84 68.68 K C.948.954.966 i a) b) i MPa Pa 77.84 by interlatin i η.8 (i ) /.8.86 (77.84.86)/.8 88.9J/g O 57.7 C by interlatin W ( ) W. g/e W.7J/e.7KW ( 88.9.86) 6-

( ) ( ) F 94 654..85 5 6.9 η 6.9.9 5 5 at 85% effiieny. t ia F 6 Air reed fr5 ia, O.857 O ia, 6 F ia 85% η

W Exanin Pre a a a a V V η V V fr V V H V H SteadyFlwEnergyEquatin

AI ABLE - able A-7, A-7E ( ) ( ) r r r r r r ) ( ) ( ) ( ) ( b) C F, able bae 4) (6 d d d u d eat eifi ariable a)

@ @ Air underge an adiabati, ientri exanin fr 9 Ka, K t Pa. @ r teerature ideal ga alue,.5,.4, able A 7 r r r r K,.4.6 ariable 4., @ ( ) K ntant alue, r ( ) 9 eifi 9 4.667 9 r.6.6 r.4.4.667, 5.8 575.5 eat 5.7 56 K K K able A -7.86 56. Pa Uing Ideal Ga Law r r r r.78 /g 56,.66 /g 9 Pa Pa.66 /g r 7. 647.9. 7. (.% differene).9 /g.86. 9Pa

6-4 Stea at 8 ia and 9 F enter an adiabati turbine and leae at 4 ia. Wat i te axiu aunt f wr tat te turbine an delier? 456, BU/lb O.64 BU/ lb @.64 and 4 ia f.64.94 x.97 fg.845 f x fg 6.4.97 9.69 4.7 BU/lb W 456, 4.7. ax 8 ia 9 F BU/lb 4 ia

658.8 BU/lb 7.69 7.69 7.69.9 x x.948 6.59 x f 4.54.948 4.7 495.6 Btu/lb @ 5 Pa, C 68.4 Btu/lb 7.6954 V V W V V W - 8 8 J/e 658.8 68.4 8 J/e S ( - ) W W η ientri ientri W W fg 4 ( 875.9.) 8. g 8.g ( 7.695-7.69) 5.765 J/ K 8. g 955 KW 8 8.8% 955 atual ientri 6-97 e wer utut f an adiabati turbine i 8 MW. Stea enter te turbine at 6 C, 6 MPa and 8 /e. Stea leae te turbine at 5 Pa, C and 4 /e. Deterine a) te turbine tea a flw rate, b) te ientri effiieny f te turbine. ) te entry ange in te exanin re ( 658.8 494.97.) 6 Ma 6 C 8 /e tea 5 Pa C 4 /e

6-7 Cnider te effet f arying te ientri effiieny f an adiabati nzzle fr 8% t % n te nzzle exit teerature and reure. Inlet nditin and te exit elity are eld ntant. Air enter te nzzle at 6 ia, F and a lw elity. Air leae te nzzle at wit a elity f 8 ft.e. Fr ηnzzle 9% O @ 48, r 5.4, 6.89 BU/lb V V V V 8 BU/lb 6.89 (778.)ft /e 5. BU/lb atual exit entaly O @ 5. BU/lb ablea 7E 4. η ( )/.9 6.89 ( 6.89 5. )/.9 49.68 BU/lb ablea 7E @ 49.68 BU/lb, Pr 46.4 r r r 46.4 6 ia 5. ia r 5.4 will ary wit effiieny. 6 ia F air 8 ft/e

arie wit effiieny η. 5. r 46.694 5.8.9 49.7 46.4 5..8 47.9 45.6 5.4 η

6-55 Stea enter a tw-tage adiabati turbine at a flw rate f 5 g/e, a reure f 7MPa and a teerature f 5 C. After te firt tage at a reure f MPa % f te tea i extrated t be ued in a eating re. Stea leae te end tage f te turbine at 5 Pa. Deterine te wer ut ut f te turbine fr an ientri exanin in bt tage and fr an ientri effiieny f 88% in bt tage. Pt 5 7MPa 4.4 6.8 MPa 6.8 5 Pa 6.8 MPa 5 Pa @MPa 5 94. 6.965 879.4 6.8 87.9 6.6957 6.8-6.6956 rati.45 6.965-6.6956 88. @ 5 Pa 6.8-.9 x.878 6.59 4.54.878 4.7 64.7 J/g a) b) tea ( ). ( ) Wientri.9 Wientri.9. 5 Wientri 5,54 KW Watual η.88 Wientri W.88 5,54 KW,47 KW atual 5 ( 4.4 64.7) ( 4.4 88. )

Kelin Plan Stateent f te Send Law SECOND LAW OF HEMODYNAMICS It i iible t ntrut an engine wi, erating in a yle,will rdue n ter effet tan te extratin f eat fr a ingle eat reerir and te erfrane f a equialent aunt f wr. Clauiu Stateent f te Send Law It i iible t ae a yte erating in a yle wi tranfer eat fr a ler t a tter bdy witut wr being dne n te yte by te urrunding. Fr a eerible Pre reerible re irreerib le re d d ENOPY ( S S) S reerible re d Fr an Irreerible re ( S S) Fr an ideal ga