Supporting Information

Similar documents
Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries

Supporting Information

SUPPLEMENTARY INFORMATION

Supporting Information

A Scalable Synthesis of Few-layer MoS2. Incorporated into Hierarchical Porous Carbon. Nanosheets for High-performance Li and Na Ion

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors

Supporting Information. Facile electrospinning formation of carbon-confined metal oxide cube-intube. nanostructures for stable lithium storage

Supporting Information

Supporting Information

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

Supporting Information

Supporting Information for

Supporting Information

Electronic Supplementary Information

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supporting Information

Supporting Information

High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg3Bi2

An Advanced Anode Material for Sodium Ion. Batteries

Electronic Supplementary Information

Electronic Supplementary Information. Three-Dimensional Carbon Foam/N-doped 2. Hybrid Nanostructures as Effective Electrocatalysts for

Supporting Information

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, , Singapore. b

Supporting Information. Oxalate-Assisted Formation of Uniform Carbon-Confined SnO 2 Nanotubes with Enhanced Lithium Storage

Supporting Information

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium-

Electronic Supplementary Information

Supporting information

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

Supporting Information

Nitrogen-doped Activated Carbon for High Energy Hybridtype Supercapacitor

Supplementary Information

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage

Supporting Information

Tuning the Shell Number of Multi-Shelled Metal Oxide. Hollow Fibers for Optimized Lithium Ion Storage

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

Electronic Supplementary Information (ESI)

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries

Electrochemical Properties of Hollow, Spherical Li 2 O-SnO 2 -Cu- C Nanocomposite Powders Prepared by Spray Pyrolysis

Supporting Information for

Supporting Information

Boosting rate capability of hard carbon with an ether-based. electrolyte for sodium ion batteries

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

High-Performance Silicon Battery Anodes Enabled by

Science and Technology, Dalian University of Technology, Dalian , P. R. China b

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Electronic Supplementary Information (ESI)

Electronic Supplementary Information

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance

Supplementary Information

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Electronic Supplementary Information

Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5. Nanocrystal for High-Rate Lithium Sulfur Battery

Electronic Supplementary Information. Facile Synthesis of Germanium-Graphene Nanocomposites. and Their Application as Anode Material for Lithium Ion

Supporting Information An Interlaced Silver Vanadium Oxide-Graphene Hybrid with High Structural Stability for Use in Lithium Ion Batteries

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation

Rational design of oxide/carbon composite to achieve superior rate-capability via enhanced lithium-ion transport across carbon to oxide

Electronic Supplementary Information. A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film

Graphene oxide hydrogel at solid/liquid interface

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Supporting Information

Please do not adjust margins. Electronic supplementary information

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

Supporting Information

Facile synthesis of nanostructured CuCo 2 O 4 as a novel electrode material for high-rate supercapacitors

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Electronic Supplementary Information

Bulk graphdiyne powder applied for highly efficient lithium storage

Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their. application in supercapacitor

Supporting Information

Self-rearrangement of silicon nanoparticles. high-energy and long-life lithium-ion batteries

Supporting Information

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries

Supporting Information

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

Micro/Nanostructured Li-rich Cathode Materials with. Enhanced Electrochemical Properties for Li-ion. Batteries

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Supporting Information

Supporting information

Department of Materials Science and Engineering, Research Institute of Advanced

Electronic Supplementary Information

Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin , PR China

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Transcription:

Supporting Information Iron Telluride Decorated Reduced Graphene Oxide Hybrid Microspheres as Anode Materials with Improved Na-Ion Storage Properties Jung Sang Cho 1, Seung Yeon Lee 1, Jung-Kul Lee 2, *, and Yun Chan Kang 1, * Address: 1 Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea. 2 Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea. *Corresponding author. E-mail: yckang@korea.ac.kr, jkrhee@konkuk.ac.kr. S-1

Characterization The crystal structures of the FeTe 2 -rgo hybrid and bare FeTe 2 powders were investigated using X-ray diffractometry (XRD, X pert PRO MPD) with Cu-K α radiation (λ = 1.5418 Å) at the Korea Basic Science Institute (Daegu). The morphologies of the two samples were investigated using scanning electron microscopy (SEM, TESCAN, VEGA3 SBH) and highresolution transmission electron microscopy (HR-TEM, JEOL, JEM-2100F) at a working voltage of 200 kv. The specific surface areas of the powders before and after post-treatment at various temperatures were calculated by a Brunauer-Emmett-Teller analysis of nitrogenadsorption (TriStar 3000). X-ray photoelectron spectroscopy (XPS, Thermo Scientific K- Alpha) of the powders was performed with Al Kα radiation (1486.6 ev). The structure of the carbon in the microspheres was characterized via Raman spectroscopy (Jobin Yvon LabRam HR800, excitation source: 632.8 nm He-Ne laser) at room temperature. To determine the amount of rgo in the FeTe 2 -rgo hybrid powders, thermogravimetric analysis (TGA, TA Instruments, SDT Q600) and elemental analysis (EA, Eurovector, EA3000) was performed in air at a heating rate of 10 C min -1. Electrochemical measurements The electrochemical properties of the FeTe 2 -rgo hybrid and bare FeTe 2 powders were analyzed using a 2032-type coin cell. The anode was prepared by mixing the active material, carbon black, and sodium carboxymethyl cellulose at a weight ratio of 7:2:1. Na metal and microporous polypropylene film were used as the counter electrode and the separator, respectively. The electrolyte was 1 M NaClO 4 and 5% fluoroethylene carbonate dissolved in a mixture of ethylene carbonate/dimethyl carbonate (1:1 v/v). The discharge/charge characteristics of the samples were investigated by cycling over a potential range of 0.001 3.0 V at various current densities. Cyclic voltammograms (CVs) were measured at a scan rate of 0.07 mv s -1. The size of the negative electrode containing the FeTe 2 powders was 1.0 cm 1.0 cm and the mass loading was approximately 2.0 mg cm -2. The electrode density of the FeTe 2 -decorated rgo hybrid powders was approximately 1.62 g cm -3. Electrochemical impedance spectra were obtained by AC electrochemical impedance spectroscopy (EIS, edaq SP1 ZIVE Potentiostat) over a frequency range of 0.01 Hz 1000 khz. S-2

Figure S1. Schematic diagram of the spray pyrolysis applied in the preparation of the Fe 3 O 4 - decorated rgo hybrid powders as a precursor powder. S-3

Figure S2. (a) Schematic diagram and (b) digital photo of the pilot-scale spray drying system applied in the preparation of the precursor powders for the bare Fe 2 O 3 powders. S-4

Figure S3. Morphologies and phase analysis of the Fe3O4-decorated rgo hybrid powders prepared at 600 oc in Ar atmosphere by spray pyrolysis: (a) SEM image, (b-d) TEM images, (e) HR-TEM image, and (f) XRD pattern. S-5

Figure S4. TG analysis of the FeTe 2 -decorated rgo hybrid powders. Table S1. Elemental analysis of the FeTe 2 -decorated rgo hybrid powders. S-6

Figure S5. SEM images and XRD patterns of the bare FeTe 2 powders prepared (a) after spray drying process, (b) subsequent combustion process for the sake of carbon decomposition in the structure, and (c) subsequent tellurization process. S-7

R e : the electrolyte resistance, corresponding to the intercept of high frequency semicircle at Z re axis R f : the SEI layer resistance corresponding to the high-frequency semicircle Q 1 : the dielectric relaxation capacitance corresponding to the high-frequency semicircle R ct : the denote the charger transfer resistance related to the middle-frequency semicircle Q 2 : the associated double-layer capacitance related to the middle-frequency semicircle Z w : the Na-ion diffusion resistance Figure S6. Randle-type equivalent circuit model used for AC impedance fitting. S-8

Figure S7. CV curves of the bare FeTe 2 powders. S-9

Table S2. Sodium-ion storage properties of various metal compounds materials. Materials FeTe 2 -rgo composite SnS 2 -rgo composite CuO nanorod arrays Voltage range (V) Current rate Initial Coulombic efficiency [%] 0.001-3.0 0.2 A g -1 76 % 0.01-2.5 0-3.0 0.2 A g - 1 75 % 0.2 A g - 1 ~88 % TiO 2 nanotube 0.9-2.5 0.05 A g -1 68 % MoS 2 /graphene composite SnSe/carbon nanocomposite MoSe 2 yolk-shell 0.01-2.0 0.025 A g -1 83 % 0.01-2.0 0.5 A g -1 55.1 % 0.001-3.0 0.2 A g -1 85 % Initial discharge/charge Capacity Final discharge capacity Cycle number 493/373 mah g -1 293 mah g -1 80 Ref This work 839/630 mah g -1 628 mah g -1 100 S1 ~700/~620 mah g -1 290 ma h g -1 450 S2 110/75 mah g -1 150 mah g -1 15 S3 407/338 mah g -1-20 S4 748/412 mah g -1 325 mah g -1 200 S5 527/448 mah g -1 433 mah g -1 50 S6 Sn 4 P 3 0-1.5 0.1 A g -1 - - 718 mah g -1 100 S7 FeSe 2 microspheres Flower-like Sb 2 S 3 MnS hollow microspheres VS 4 /rgo composite powder NiS 2 -graphene nanosheets 0.5-2.9 1 A g -1-0.01-2.0 0.05 A g -1 72.9 0.01-2.6 0.1 A g -1 ~65 % 0.01-2.2 0.1 A g -1 75 % - 0.1 C 65 % Cu 3 P nanowire 0.01-2.5 1 A g -1 - CoSe x -rgo composite NiSe 2 /C porous nanofiber 0.001-3.0 0.3 A g -1 70 % 0.001-3.0 0.2 A g -1 72 % 442/- mah g -1 372 mah g -1 2000 S8 970/707 mah g -1 835 mah g -1 50 S9 ~750/~490 mah g -1 308 mah g -1 125 S10 450/338 mahg -1 241 mah g -1 50 S11 529/- mah g -1 407 mah g -1 50 S12 -/196 mah g -1 134 mah g -1 260 S13 656/460 mah g -1 420 mah g -1 50 S14 717/516 mah g -1 468 mah g -1 100 S15 SnSe alloy 0-2.0 0.143 A g -1 - - 707 mah g -1 50 S16 Reference (S1) Qu, B.; Ma, C.; Ji, G.; Xu, C., Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Layered SnS 2 Reduced Graphene Oxide Composite A High Capacity, High Rate, and Long Cycle Life Sodium Ion Battery Anode Material. Adv. Mater. 2014, 26, 3854-3859. (S2) Yuan, S.; Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Engraving Copper Foil to Give Large Scale Binder Free Porous CuO Arrays for a High Performance Sodium Ion Battery Anode. Adv. Mater. 2014, 26, 2273-2279. S-10

(S3) Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. Amorphous TiO 2 Nanotube Anode for Rechargeable Sodium Ion Batteries. J.Phys.Chem. Lett. 2011, 2, 2560-2565. (S4) David, L.; Bhandavat, R.; Singh, G. MoS 2 /Graphene Composite Paper for Sodium-Ion Battery Electrodes. ACS nano 2014, 8, 1759-1770. (S5) Zhang, Z.; Zhao, X.; Li, J. SnSe/Carbon Nanocomposite Synthesized by High Energy Ball Milling as an Anode Material for Sodium-Ion and Lithium-Ion Batteries. Electrochim. Acta 2015, 176, 1296-1301. (S6) Ko, Y. N.; Choi, S. H.; Park, S. B.; Kang, Y. C. Hierarchical MoSe 2 Yolk Shell Microspheres with Superior Na-Ion Storage Properties. Nanoscale 2014, 6, 10511-10515. (S7) Kim, Y. J.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N.-S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin Phosphide as a Promising Anode Material for Na-Ion Batteries. Adv. Mater. 2014, 26, 4139-4144. (S8) Zhang, K.; Hu, Z.; Liu, X.; Tao, Z.; Chen, J. FeSe 2 Microspheres as a High Performance Anode Material for Na Ion Batteries. Adv. Mater. 2015, 27, 3305-3309. (S9) Zhu, Y.; Nie, P.; Shen, L.; Dong, S.; Sheng, Q.; Li, H.; Luo H.; Zhang, X. High Rate Capability and Superior Cycle Stability of a Flower-Like Sb 2 S 3 Anode for High-Capacity Sodium Ion Batteries. Nanoscale 2015, 7, 3309-3315. (S10) Xu, X.; Ji, S.; Gu, M.; Liu, J. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li-and Na-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 20957-20964. (S11) Sun, R.; Wei, Q.; Li, Q.; Luo, W.; An, Q.; Sheng, J.; Wang, D.; Chen, W.; Mai, L. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery. ACS Appl. Mater. Interfaces 2015, 7, 20902-20908. (S12) Wang, T.; Hu, P.; Zhang, C.; Du, H.; Zhang, Z.; Wang, X.; Chen, S.; Xiong, J.; Cui, G. Nickel Disulfide Graphene Nanosheets Composites with Improved Electrochemical Performance for Sodium Ion Battery. ACS Appl. Mater. Interfaces 2016, 8, 7811-7817. S-11

(S13) Fan, M.; Chen, Y.; Xie, Y.; Yang, T.; Shen, X.; Xu, N.; Yu, H.; Yan, C. Half Cell and Full Cell Applications of Highly Stable and Binder Free Sodium Ion Batteries Based on Cu 3 P Nanowire Anodes. Adv. Funct. Mater. 2016, DOI: 10.1002/adfm.201601323. (S14) Park, G. D.; Kang, Y. C. One Pot Synthesis of CoSex rgo Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium Ion Batteries. Chem. Eur. J. 2016, 22, 4140-4146. (S15) Cho, J. S.; Lee, S. Y.; Kang, Y. C. First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber. Sci. Rep. 6 2016, 23338 (S16) Kim, Y.; Kim, Y.; Park, Y.; Jo, Y. N.; Kim, Y. J.; Choi, N. S.; Lee, K. T. SnSe Alloy as a Promising Anode Material for Na-Ion Batteries. Chem. Commun. 2015, 51, 50-53. S-12