CHAPTER 4 The Integral Forms of the Fundamental Laws

Similar documents
CHAPTER 1 Basic Considerations

CHAPTER 1 Basic Considerations

MECHANICS of FLUIDS, 4 TH EDITION, SI

The Integral Forms of the Fundamental Laws

CHAPTER 3 Introduction to Fluids in Motion

CHAPTER 2 Fluid Statics

FE Exam Fluids Review October 23, Important Concepts

Therefore, the control volume in this case can be treated as a solid body, with a net force or thrust of. bm # V

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Rate of Flow Quantity of fluid passing through any section (area) per unit time

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

Atmospheric pressure. 9 ft. 6 ft

HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION

2 Internal Fluid Flow

The Impulse-Momentum Principle

CHAPTER 12 Turbomachinery

Lesson 6 Review of fundamentals: Fluid flow

Figure 1 Answer: = m

Chapter (6) Energy Equation and Its Applications

Q1 Give answers to all of the following questions (5 marks each):

PROPERTIES OF FLUIDS

Conservation of Angular Momentum

Mass of fluid leaving per unit time

ROAD MAP... D-0: Reynolds Transport Theorem D-1: Conservation of Mass D-2: Conservation of Momentum D-3: Conservation of Energy

Consider a control volume in the form of a straight section of a streamtube ABCD.

5 ENERGY EQUATION OF FLUID MOTION

Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016

ME3560 Tentative Schedule Spring 2019

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

Chapter 1 INTRODUCTION

ME3560 Tentative Schedule Fall 2018

IX. COMPRESSIBLE FLOW. ρ = P

Fluid Mechanics Answer Key of Objective & Conventional Questions

Unit C-1: List of Subjects

vector H. If O is the point about which moments are desired, the angular moment about O is given:

CHAPTER 2 Fluid Statics

Mechanical Engineering Programme of Study

Fluid Dynamics Midterm Exam #2 November 10, 2008, 7:00-8:40 pm in CE 110

Chapter 4 DYNAMICS OF FLUID FLOW

2.25 Advanced Fluid Mechanics

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Answers to questions in each section should be tied together and handed in separately.

Ph.D. Qualifying Exam in Fluid Mechanics

Chapter Four fluid flow mass, energy, Bernoulli and momentum

CHAPTER 2 Fluid Statics

Where does Bernoulli's Equation come from?

New Website: M P E il Add. Mr. Peterson s Address:

!! +! 2!! +!"!! =!! +! 2!! +!"!! +!!"!"!"

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

Lecture 4. Differential Analysis of Fluid Flow Navier-Stockes equation

Angular momentum equation

1 st Law Analysis of Control Volume (open system) Chapter 6

Chapter Four Hydraulic Machines

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

HOW TO GET A GOOD GRADE ON THE MME 2273B FLUID MECHANICS 1 EXAM. Common mistakes made on the final exam and how to avoid them

Chapter 6 The Impulse-Momentum Principle

Chapter 3 Fluid Statics

Chapter 17 Two Dimensional Rotational Dynamics

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

The Bernoulli Equation

Homework 6. Solution 1. r ( V jet sin( θ) + ω r) ( ρ Q r) Vjet

Chapter Four Hydraulic Machines

Sourabh V. Apte. 308 Rogers Hall

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia

CHAPTER 2 Fluid Statics

Fluid Mechanics. du dy

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

Department of Physics

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Chapter 5 Control Volume Approach and Continuity Equation

The online of midterm-tests of Fluid Mechanics 1

Chapter 5. Mass and Energy Analysis of Control Volumes

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad

SOLUTIONS TO CONCEPTS CHAPTER 2

Campus Mail Box. Circle One: Richards 03 Richards 04 Lui 05 Lui - 06

Chapter 11. Angular Momentum

E = K + U. p mv. p i = p f. F dt = p. J t 1. a r = v2. F c = m v2. s = rθ. a t = rα. r 2 dm i. m i r 2 i. I ring = MR 2.

Basic Fluid Mechanics

3.8 The First Law of Thermodynamics and the Energy Equation

Basic Fluid Mechanics

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

equation 4.1 INTRODUCTION

Solve the set of equations using the decomposition method and AX=B:

CHAPTER 2 Pressure and Head

f= flow rate (m 3 /s) A = cross-sectional area of the pipe (m 2 ) v= flow speed (m/s)

CIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Only if handing in. Name: Student No.: Page 2 of 7

Piping Systems and Flow Analysis (Chapter 3)

In which of the following scenarios is applying the following form of Bernoulli s equation: steady, inviscid, uniform stream of water. Ma = 0.

KNOWN: Pressure, temperature, and velocity of steam entering a 1.6-cm-diameter pipe.

1.060 Engineering Mechanics II Spring Problem Set 4

43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms,

Physics 123 Unit #1 Review

Problem 1 Problem 2 Problem 3 Problem 4 Total

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh

Introduction to Aerospace Engineering

Dynamic Meteorology - Introduction

ME 316: Thermofluids Laboratory

Transcription:

CHAPTER 4 The Integral Forms of the Fundamental Laws FE-type Exam Review Problems: Problems 4- to 4-5 4 (B) 4 (D) 4 (A) 44 (D) p m ρa A π 4 7 87 kg/s RT 87 9 Refer to the circle of Problem 47: 757 Q A ( π 4 4 sin 755 ) 56 m /s 6 W P Q g p p W P + 4 4 W P 4 kw and energy req'd 47 kw 85 45 (A) p p + g p + p 7 Pa 98 98 Manometer: ρ H + p g + p or g p ρ g g 98 + 46 (C) 47 (B) 796 Energy: K K 5 98 98 Combine the equations: 98 8 m/s Δp Q 4 hl K 796 m/s g A π 4 796 K K 5 98 98 7 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

48 (C) 49 (D) 4 (A) 4 (A) 4 (C) W P Q g W P Δp + W P 6 QΔ p 4 4 6 kw 8 kw η 89 pb 458 76 6 + 5 + + 98 98 98 pb 46 Pa In the above energy equation we used Q hl K with 44 m/s g A π Q A π 4 9 89 m/ s Energy surface to entrance: p H K P g + + + g 9 89 8 9 89 H P + + 5 + 5 6 4 m 98 98 98 W QH / η 98 4 / 75 6 W P P P After the pressure is found, that pressure is multiplied by the area of the window The pressure is relatively constant over the area p p (65 ) 7 + + p 98 85 Pa g g 98 pa F ρq ( ) 85 π 5 F 7(65 ) F 7 5 N 4 (D) Fx m ( x x) 5(5 cos 6 5) 5 N 44 (A) 45 (A) F m ( ) π 6 (4cos 45 4) 884 N x rx rx Power F 884 7 7 W x B Let the vehicle move to the right The scoop then diverts the water to the right Then, F m ( x x) 5 6 [6 ( 6)] 7 N 8 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

Basic Laws 46 b) The energy transferred to or from the system must be ero: Q W 4 b) The conservation of mass d) The energy equation System-to-Control-olume Transformation 44 46 ˆ ˆ ˆ 77( ˆ ˆ) n i j i+ j ˆ ˆ ˆ n nˆ i 77( + ) i j 77 fps nˆ ˆi (866ˆi 5 ˆj ) 866 fps n nˆ ˆi ( ˆj ) n nˆ 866ˆi 5ˆj nˆ ˆj ( Bn ˆ ) A 5(5ˆi + 866 ˆj) ˆj ( ) 5 866 559 cm olume 5 sin 6 559 cm Conservation of Mass Use Eq 44 with m representing the mass in the volume: 4 dm dm + ρ ˆ da n + ρa ρa cs dm + ρq m dm Finally, m ρq 44 A A π 5 6 π 5 44 44 m ρa 94 π 5 6 968 slug/sec 44 5 ft/sec Q A π 5 44 6 45 ft /sec 9 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

48 p 5 kg 46 kg ρ ρ ρ ρ RT 87 9 m 87 5 m A A 44 87 44 π 5 6 87 π 5 98 m/s m ρ A 89 kg/s Q A 47 m /s Q 5 m /s 44 b) ( 5 + 5 5) π d 4 d 4478 m cosθ / θ 6 o θ R a) Since the area is rectangular, 5 m/s 44 m ρ A 8 8 5 kg/s Q m ρ m /s c) 8 4 + 5 + 5 75 m/s m ρ A 8 8 75 48 kg/s Q m 48 m /s ρ 444 If dm /, then ρ A ρ A + ρ A In terms of m and Q becomes, letting ρ ρ ρ, π m + m 58 kg/s this 446 min m out + m ρ ρ (y y )dy+ ρ + m Note: We see that at y m the velocity u() m/s Thus, we integrate to y, and between y and the velocity u : 4 4ρ ρ+ ρ + m m 6667ρ 8 kg/s / ( ) m ρ da 545 y ( 6 y 9 y ) 5 dy 448 / u ( ) 6y 7y 9y + 9y dy 4 max fps (See Prob 44b) 458 slug/sec 4 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

ρ + 94 7 slug/ft 4 ρa 7 5 46 slug/sec Thus, ρa m since ρ ρ(y) and (y) so that ρ ρ 45 45 m of HO 4 m of air π 5 9 5 5 (5h) m of air s h 565 m m in m + m m/s (see Prob 44c) π + π 4 m/s The control surface is close to the interface at the instant shown i interface velocity e ˆn i ˆn 454 ρ A ρ A e e e i i i 8 5 π 5 π i 87 67 i 44 m/s For an incompressible flow (low speed air flow) 456 / 5 uda A y 8dy π 5 A 8 5 6/ 5 π 5 7 m/s 6 458 Draw a control volume around the entire set-up: dm tissue ρ ρ + A A d d + m h ( h tan ) h tissue ρπ ρπ φ 4 or m d d h h h tissue ρπ + tan φ 4 4 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

46 dm + ρa ρ A 6 m + ( π / 6) m 4 99 kg/s 46 464 dm + ρ Q ρ A m where m ρ Ah a) π 6 h + 6 / 6 π h m/s or mm/s Choose the control volume to consist of the air volume inside the tank The conservation of mass equation is d ρd + ρ da n C Since the volume of the tank is constant, and for no flow into the tank, the equation is CS d ρ + ρ A e e e p Assuming air behaves as an ideal gas, ρ At the instant of interest, RT dρ dp Substituting in the conservation of mass equation, we get RT ( )( ) π ( ) dp ρ 8 kg/m m/s 5 m ea e e kj ( RT ) 87 98 K 5 m kg K dp 45 kpa/s Energy Equation 466 du W Tω+ pa + μ A dy belt 5 π /6 + 4 4 5 + 8 5 8 47 + 8 + 74 847 W 5 468 8% of the power is used to increase the pressure while % increases the 4 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

internal energy ( Q because of the insulation) Hence, mδ u W 4 8ΔT 5 Δ T 86 C W 47 T 4 89 b) W 4 89 (9 /6) 98 5 9 W mg T p p g + + g + + ft 47 474 6 + 6 + h 64 4h 86 + h h Continuity: h This can be solved by trial-and-error: h 8': 84? 8 h 79' : 84? 8 h 79 ' h 8' : 84? 8 h 75' : 84? 8 h 76 ' Manometer: Position the datum at the top of the right mercury level 98 4 + 98 + p + ( 98 6) 4 + 98 + p p p Divide by 98: 4 + + + 6 4 + + g Energy: h p p g + + g + + () () Subtract () from (): With m, g 6 4 994 m/s Q 8 π 5 fps 476 Continuity: π π 5 544 fps Energy: p p g + g + +7 g 4 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

5 544 p 6 44 + 6 4 6 64 4 64 4 879 psf or 644 psi 478 8 Q/ A π p p Energy: g + g + + g 89 m/s 9 546 m/s p 98 54 6 8 9 8 98 98 6 Pa 48 a) Energy: p p g + + g + + g 98 4 686 m/s Q A 8 686 549 m /s For the second geometry the pressure on the surface is ero but it increases with depth The elevation of the surface is 8 m: + h g( h) 98 664 m/s g Q 8 664 5 m /s Note: is measured from the channel bottom in the nd geometry H + h 48 p p g + + g + + b) Q A π 9 94 8 98 + 4 94 m/s 98 485 m /s p Manometer: H+ + p 6 H+ + p H + p 6 484 Energy: p p + g + g Combine energy and manometer: 6H g Continuity: d d 4 d 6H g 4 d 44 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

/ / d π 6H g H π 4 4 5 4 4 4 4 d / d d d Q d d d a) Energy from surface to outlet: H gh g 486 p p Energy from constriction to outlet: + g + g Continuity: 4 With p p v 45 Pa and p Pa, 45 98 + 6 98 gh + 98 98 gh H 66 m Energy: surface to surface: + h L + g 488 Continuity: 4 6 g g 6g ( 94 Energy: surface to constriction: + ) + g 98 44 m H 44 + 64 m elocity at exit e elocity in constriction elocity in pipe e Energy: surface to exit: g H gh e 49 Continuity across nole: D d e Also, 4 Energy: surface to constriction: H p v + g 4 D 97 a) 5 6 5 4 + 55 g g 98 D m 49 m A ρ 94 π 5 79 slug / sec W P 44 ft-lb 579 + / 85,95 or 5 hp 64 sec 45 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

494 496 + W T 9 8 6 87 98 98 W T 4 6 W Q We used m/s A π 5 η T 94 a) p p c v Q WS mg + + + ( T T) g g The above is Eq 457 with Eq 458 and Eq 7 pg 85 98 6 98 5 99 N/m RT 87 9 87 T T 6 T 85 765 ( 5 )5 98 + + ( T 9) 98 5 99 98 T 57 K or 99 C Be careful of units p 6 Pa, c v 765 J/kg K 498 4 Energy: surface to exit: W mg TηT + 4 5 g g 5 6 m / s mg Q 5 98 47 5 N / s π 6 6 W + T 8 47 5 6 4 5 WT 59 kw 98 98 Choose a control volume that consists of the entire system and apply conservation of energy: H p H p h g g + + + + + + + P T L 46 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

Carburetor Section () 5 m Pump Section () We recognie that H T, is negligible and h L /g where Q/A and Q/ A Rearranging we get: p p HP + + + h g 6 ( ) π ( 5 m) L 6 m /s Q () m/s hl m A 98 6 Q 6 m /s 5 m/s π 4 ( 4 m) A Substituting the given values we get: H P ( 95 ) kn/m ( 5 m/s) + 5m + + m 885 m 666 kn/m 98 m/s The power input to the pump is: W ( ) 6 ( )( )( ) QH / η 666N/m 6 m /s 885m / 75 5 W P P P Energy: across the nole: 5 + + p p 65 g g 4 65 4 + 458 m/s 98 98 98 86 m/s Energy: surface to exit: 86 458 76 H P + 5 + 5 + 98 98 98, A 76 m/s, 68 m H P 47 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

QHP 98 ( ) 86 68 W π P 8 W η 85 Energy: surface to A : P pa 76 76 5 + + 98 98 98 pa 9 4 Pa Energy: surface to B : pb 458 76 6 + 5 + + pb 46 Pa 98 98 98 Depth on raised section y Continuity: y Energy (see Eq 45): + + ( 4+y) g g 44 9 59 + y 59 + 4 8, or y y gy Trial-and-error: y y :? 8: + 5? y 85 m y :? y m y : +? The depth that actually occurs depends on the downstream conditions We cannot select a correct answer between the two 46 48 The average velocity at section is also 8 m/s The kinetic-energy-correction factor for a parabola is (see Example 49) The energy equation is: p p + α + + h L g g 8 5 8 + + + 98 98 98 98 h L 85 m 4 a) r da rdr 5 m/s A π π 4 r da π 5 α πrdr A h L 48 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

5 4 4 + 6 6 4 8 8 6 4 Engine power FD + m + u u mq f f F D + m + cv( T T) p p ν L α g + + g + gd 4 6 8 5 + 98 98 5 + 44 44 5 m/s and Q 77 m /s Energy from surface to surface: p p H K P + + + g g g 44 Q a) H P 4 + 5 4 + 5 7 Q π 4 98 Try Q 5 : H 4 (energy) H 58(curve) P Try Q : H 446 (energy) H 48(curve) P P P Solution: Q m /s Momentum Equation p p + + g g d 4 ( d /) 46 b) 4 6 + 98 98 98 7 m/s 4 π F π 7 ( 4 7 7 ) F 679 N d) 44 6 + 74 fps 64 49 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

π 5 F 94 π (5/) 74 (4 ) F 7 lb p p g + g + π 6 5 m/s e e Σ F m ( ) x x x 48 a) 56 8 4 44 + 98 98 98 pa F m ( ) 56 m/s 4 π 5 F π 5 56(56 56) F 69 N c) 65 4 g 4 9 6 + 98 g 4585 m/s 4 π 5 F π 5 4585(55 4585) F 75 N p p 5 p 4 + + g g g 4 98 b) 4 5 7 m/s, 9 m/s 5 98 pa F m ( ) x x x F x 4 π 4 + π 4 7 8 N F m ( ) π 4 7 ( 9 ) 7 N y y y A A m/s π 5 4 π(5 ) p p + g + g 4 44 p 4 98 5 7 Pa 98 p A F m ( ) F 5 7π 5 π 5 4( 4) 496 N Continuity: 6 Energy (along bottom streamline): p A F 5 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

p p g + + g + + / 9 + 6 + 98 98 67, 6 m/s Momentum: F F F m( ) 98 (6 4) 98 ( 4) F ( o 4) 67(67 6) F 68 N (F acts to the right on the gate) Continuity: y y 4 y y 4 y F F F 46 Use the result of Example 4: a) y 4 8 m 8 y y y y g + + / / 8 8 + 8 + 8 98 886 m/s Refer to Example 4: 48 4 y 6 yw 6 w ρ 6 w ( y 6 ) y y 6 ( y 6) 6ρ y or ( y+ 6) y 77 y 8 ft, 58 fps π 5 A A 5 m/s π 5 5 p 98 7 5 Pa 98 Σ F m p A F m ( ) F p A + m ( ) x x x 7 5π 5 + π 5 5 44 N p p + + g g 5 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

( ), a) Fx m x x F m 4 m 8 m/s ρ A π 5 F 8 46 N F b) F m ( )(cos α ) r B 8 F ( 8 ) 65 N 8 44 46 b) F m ( )(cos α ) 7 π 4 ( 8) ( 866 ) r 44 m/s B m ρa π 4 4 4 kg / s B Rω 5 5 m / s R m ( )(cos α ) π 5 4 5(5 ) R x 98 N x B W R 98 5 47 W x B 48 F m x ( B)(cos ) 4π ( 4 8) ( 5 ) R x 65 N B 5 8 m/ s W 5 65 8 986 W The y-component force does no work b) sin r sinα α r r r α cos 4 cos 47, 685 m/s 44 sin 6 685sinα cos 6 685cosα 4 89 m/s, α 95 R m ( ) π 5 ( 89cos6 cos ) x x x R 75 N x 6 W R 4 75 6 W B x 44 To find F, sum forces normal to the plate: F m ( ) Σ n out n n 5 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

a) [ ] F 4 4 ( 4sin 6 ) 8 N (We have neglected friction) Σ F m + m ( ) m 4sin Bernoulli: t m m 5m Continuity: m m m m m 75m 75 4 kg/s + 8 kg/s 444 446 448 r r n B x B F m ( ) 4(4 ) sin 6 F 8(4 ) sin 6 W F 8 (4 ) 75 6(6 8 + ) dw d B B x B B B B B B B B 6(6 6 + ) m/s F m ( )(cosα ) 9 8 5 89 ( 89)( ) 4 7 N r B 5 89 m/s B W 4 7 89 48 W or 647 hp 6 To solve this problem, choose a control volume attached to the reverse thruster vanes, as shown below The momentum equation is applied to a free body diagram: Momentum: [ ] ( ) R 5 m ( ) + ( ) m x r x r x r x Assume the pressure in the gases equals the atmospheric pressure and that r r r Hence, ( ) 8 m/s, and r x r ( ) ( ) sinα r x r x r where α Then, momentum is Rx 5m [ r sinα ] m r m sinα + r ( ) Momentum: R 5m sinα m m sinα + [ ] ( ) x r r r The mass flow rate of the exhaust gases is ( ) m m + m m + 4 5 5 kg/s air fuel air r r r R x 5 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

Substituting the given values we calculate the reverse thrust: ( )( )( ) R 5 kg/s 8 m/s + sin kn x Note that the thrust acting on the engine is in the opposite direction to Rx, and hence it is referred to as a reverse thrust; its purpose is to decelerate the airplane 45 45 454 For this steady-state flow, we fix the boat and move the upstream air This provides us with the steady-state flow of Fig 47 This is the same as observing the flow while standing on the boat 5 W F F F 44 N ( 89 m/s) 6 + 89 F m ( ) 44 π ( 89) 6 m/s 6 + 89 Q A π 699 m /s 89 η p 65 or 65% 4 88 Fix the reference frame to the boat so that 9 fps 6 88 4 5867 fps 6 9+ 5867 F m ( ) 94 π (5867 9) 546 lb ft-lb W F 546 9 6, or 9 hp sec 9 + 5867 m 94 π 86 slug/sec A m/s m/s ( y) ( y) flux in max ρ dy ( y) dy 8 67 N The slope at section is ( y) y+ A Continuity: A A m/s 54 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

() A A / (5) A A A 5 ( y) 5 y 5 flux out ( y 5) 8 (5 y) dy 8 [5] 48 N change 48 67 4 N 5 456 From the cv shown: π τ w π ( p p ) r r L Δpro du τw μ L dr w du 44 75 / 5 dr 6 w 9 ft/sec/ft τ w π r o L p A p A m ρ ρ ( ) top A y da 458 (8 + y )dy 656 kg/s top (8 ) 656 F ρ + + + da m m y dy F 78 N Momentum and Energy a) Energy: + + + h L See Problem 45(a) g g 46 8 98 6 9 + + 98 5 + h L h L 66 m losses A h 98 (6 ) 8 66 54 9 W/m of wih L 55 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

Moment of Momentum e m 4 989 m/s elocity in arm ρ 4 π 4 A e M r ( Ω )ρd I cv 4 r ˆ ( Ω ˆ ˆ)ρ Adr i k i 464 8ρAΩ kˆ rdr 6ρA Ωkˆ d M and ( r )ρd cv cs ( ) ( ) ˆρ ˆ 77 ˆ 77 ˆ r n da i j + k ρa e e e e The -component of r ( n ˆ) ρda 77e A e cs ρ Finally, I ρ e eρ e e ( M ) 6 AΩ 4 77 A Using A A, 6Ω 4 77 989 Ω 46 9 rad / s m ρa π 8 m/s Continuity: π π + 6( r 5) e π 6 5 m/s e 9( r 5) 44 r e e 466 5 M ˆ ( ˆ ˆ) ρ ˆ [ ˆ (44 ) ˆ I r i + Ω k i Adr+ r i + Ω k r i ] ρadr 5 5 ˆ ˆ 4Ω ρak rdr+ 4 ΩρAk (44r r ) dr 5 44 ˆ ( 5 ) ( 5 ) k (5Ω+ Ω ) kˆ 5 Ωk ˆ 56 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

e eρ 5 5 rˆi ( ˆj ) 6dr 6 rdr kˆ 86kˆ 5 Ω 86 Ω 96 rad/s 468 See Problem 465 8 e 989 m/s 989 8 m/s ˆ ˆ ˆ dω 4 ( ) ˆ ˆ MI ri Ω k i + k ri ρadr A π, A π 4 dω 8ρAΩkˆ 4ρ ˆ rdr A k r dr ˆ dω 6AΩk 6A kˆ ( r ) ( n ˆ) ρ da e A e k cs d Thus, 6 6 Ω dω AΩ+ A e Ae or + 8Ω 7 8 t ˆ The solution is Ω Ce + 7 The initial condition is Ω( ) C 7 Finally, 8t Ω 7( e ) rad/s e 57 Cengage Learning All Rights Reserved May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part