Sintesi di reti correttrici

Similar documents
EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions

Frequency domain analysis

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

EE3CL4: Introduction to Linear Control Systems

Class 13 Frequency domain analysis

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

Discrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros)

MAS107 Control Theory Exam Solutions 2008

Module 5: Design of Sampled Data Control Systems Lecture Note 8

Homework 7 - Solutions

ECE 388 Automatic Control

Discrete Inversion Formulas for the Design of Lead and Lag Discrete Compensators

Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.

Systems Analysis and Control

Lecture 11. Frequency Response in Discrete Time Control Systems

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Control System Design

Loop shaping exercise

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Solutions to Skill-Assessment Exercises

APPLICATIONS FOR ROBOTICS

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Chapter 6 - Solved Problems

Systems Analysis and Control

Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes

FREQUENCY RESPONSE ANALYSIS Closed Loop Frequency Response

The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)

An Internal Stability Example

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

STABILITY ANALYSIS TECHNIQUES

Sinusoidal Forcing of a First-Order Process. / τ

Lecture 3 - Design of Digital Filters

( ) Frequency Response Analysis. Sinusoidal Forcing of a First-Order Process. Chapter 13. ( ) sin ω () (

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

MAE 143B - Homework 9

Chapter 7. Digital Control Systems

CONTROL OF DIGITAL SYSTEMS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

= rad/sec. We can find the last parameter, T, from ωcg new

EE 4343/ Control System Design Project LECTURE 10

FREQUENCY-RESPONSE DESIGN

EECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

MAE 142 Homework #2 (Design Project) SOLUTIONS. (a) The main body s kinematic relationship is: φ θ ψ. + C 3 (ψ) 0 + C 3 (ψ)c 1 (θ)

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Boise State University Department of Electrical Engineering ECE461 Control Systems. Control System Design in the Frequency Domain

Control System Design

Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

8.1.6 Quadratic pole response: resonance

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =

Discrete-time Controllers

Digital Signal Processing IIR Filter Design via Bilinear Transform

1 Controller Optimization according to the Modulus Optimum

ECE 486 Control Systems

Control Systems. Control Systems Design Lead-Lag Compensator.

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Control Systems I. Lecture 9: The Nyquist condition

1 (20 pts) Nyquist Exercise

Control Systems. Root Locus & Pole Assignment. L. Lanari

Step Response Analysis. Frequency Response, Relation Between Model Descriptions

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year

Systems Analysis and Control

H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

Control Systems I Lecture 10: System Specifications

Data Based Design of 3Term Controllers. Data Based Design of 3 Term Controllers p. 1/10

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

ECE382/ME482 Spring 2005 Homework 8 Solution December 11,

The Frequency-response Design Method

Lecture 9 Infinite Impulse Response Filters

Analysis of SISO Control Loops

EE3CL4: Introduction to Linear Control Systems

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Nyquist Criterion For Stability of Closed Loop System

Assignment 4 Solutions Continuous-Time Fourier Transform

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

The Frequency-Response

Part II. Advanced PID Design Methods

Design of IIR filters

Homework Assignment 3

PID controllers, part I

Digital Control Systems

Classify a transfer function to see which order or ramp it can follow and with which expected error.

Robust Performance Example #1

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

MEM 255 Introduction to Control Systems: Analyzing Dynamic Response

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Topic # Feedback Control Systems

GATE EE Topic wise Questions SIGNALS & SYSTEMS

Outline. Classical Control. Lecture 1

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Transcription:

.. 6.3 1 Sintesi di reti correttrici Block scheme for the continuous time case: r(t) e(t) m(t) y(t) C(s) G(s) C(s) is the compensator to be designed: Let γ and γ denote: C(s) = 1 + τ 1 s 1 + τ 2 s (1) γ = lim s C(s) = 1, γ = lim s C(s) = τ 1 τ 2 The Bode magnitude and phase plots of compensator C(s): Magnitude C(jω) [db] 2 15 1 5 5 1 15 γ > 1 γ = 1 γ < 1 2 1 2 1 1 1 1 1 1 2 6 Phase of C(jω) [deg] 4 2 2 4 6 γ>1 γ<1 1 2 1 1 1 1 1 1 2 Frequency ω [Log 1 ]

6.3. SINTESI DI RETI CORRETTRICI 6.3 2 Design Problem (continuous time): find the parameters τ 1 and τ 2 of compensator (1) such that C(jω) = 1 + j ωτ 1 1 + j ωτ 2 = M e jϕ (2) where M and ϕ are the magnitude and the phase desired at frequency ω. Inversion formulas (continuous time): the continuous time design problem is solved by using the following inversion formulas: Graphical design procedure: τ 1 = M cos ϕ ω sin ϕ, τ 2 = cos ϕ 1 M ω sin ϕ (3) Ā 2 O A 2 B 2 = B γ 2 G(jω) B A 1 B 1 = B γ 1 Ā 1 The parameters τ 1 and τ 2 of compensator C(s) that moves point A = M A e jϕ A in B = M B e jϕ B can be obtained using the following parameters: M = M B M A, ϕ = ϕ B ϕ A, ω = ω A (4)

6.3. SINTESI DI RETI CORRETTRICI 6.3 3 Numerical example. Given the system: G(s) = 25 s(s + 1)(s + 1), let us design a lead compensator C 1 (s) which imposes a phase margin M ϕ = 6 o and with the gain γ as small as possible. Nyquist diagram: 1 ω 1 A ω 2 G O ω G(jω) B G c (jω) Point B is: Choose point A: M B = 1, ϕ B = π + M ϕ = 24 o, M A =.538, ϕ A = 194.9 o, ω A = 2.2. The parameters M and ϕ are the following: Substituting one obtains:: M = M B M A = 1.859, ϕ = ϕ B ϕ A = 45.1 o. C 1 (s) = (1 +.86s) (1 +.117s).

6.3. SINTESI DI RETI CORRETTRICI 6.3 4 The step responses of the two systems G(s) and G c (s) = C 1 (s)g(s) controlled in closed loop:. 1.5 1.5 5 1 15 secondi

6.3. SINTESI DI RETI CORRETTRICI 6.3 5 The Discrete Time Case The considered block scheme for the discrete time case: r n e n m n y n C d (z) HG(z) HG(z) is the discrete system to be controlled, H (s) is the zero-order hold: HG(z) = Z[H (s) G(s)], C d (z) is the compensator to be designed: C d (z) = The frequency response of function C d (z): 1 + α(z 1) 1 + β(z 1) H (s) = 1 e T s s (5) Magnitude Cd(z) [db] 15 1 5 5 1 γ d > 1 γ = 1 γ d = 1 γ d < 1 15 1 2 1 1 1 1 1 1 2 6 Phase of Cd(z) [deg] 4 2 2 4 γ d >1 γ d <1 6 1 2 1 1 1 1 1 1 2 Frequency ω [, π/t] Design Problem (discrete time): find the parameters α and β of compensator (5) such that: C d (e jωt ) = 1 + α(ejωt 1) 1 + β(e jωt 1) = Mejϕ, (6) where M and ϕ are the magnitude and the phase desired at frequency ω.

6.3. SINTESI DI RETI CORRETTRICI 6.3 6 Inversion formulas (discrete time): the discrete time design problem is solved by the following inversion formulas: α = 1 2 + β = 1 2 + M cos ϕ 2 sinϕ tan ωt 2 cos ϕ 1 M 2 sinϕ tan ωt 2 (7) Remark: these formulas can also be rewritten in the following form: α = 1 2 + ω τ 1 2 tan ωt 2 β = 1 2 + ω τ 2 2 tan ωt 2 (8) where τ 1 and τ 2 are obtained from the continuous time inversion formulas. Remark: the same result is obtained applying the bilinear transformation with prewarping to compensator C(s): s = ω tan ωt 2 [ z 1 z + 1 ] z = 1 + s ω tan ωt 2 1 s ω tan ωt 2 Numerical example. Let us refer to the same system G(s) = 25 s(s + 1)(s + 1) considered in the previous numerical example. Design a discrete lead compensator C d (z) which imposes a phase margin M ϕ = 6 o when T =.15 s. The discrete system HG(z) is the following: HG(z) = Z [H (s)g(s)] = (9.657z2 + 26.66z + 4.259)1 3 z 3 2.84z 2 + 1.276z.192.

6.3. SINTESI DI RETI CORRETTRICI 6.3 7 Nyquist plane when T =.15 s: Nyquist plane: T =.15 s.2.2 1 A Im.4 HG(z).6 G(s).8 1 B C d (z)hg(z) 1.5 1.5.5 Re The design specification M ϕ = 6 o completely defines point B = M B e jϕ B: M B = 1, ϕ B = π + M ϕ = 24 o Point A = HG(e jω AT ) = M A e jϕ A is chosen on the Nyquist diagram of function HG(z) for ω = ω A : M A =.5361, ϕ A = 186.2 o, ω = 2.2. Point A belongs to the admissible domain: the dotted half circle. Parameters M and ϕ are now the following: M = M B M A = 1.865, ϕ = ϕ B ϕ A = 53.76 o. Substituting M, ϕ, ω and T in the discrete inversion formulas (7) one obtains α = 5.673 and β =.723. The discrete compensator is the following: C d (z) = 1 + α(z 1) 1 + β(z 1) = 1 + 5.673(z 1) 1 +.723(z 1) The same C d (z) can be obtained applying the bilinear transformation with prewarping to compensator C(s) = 1+τ 1s 1+τ 2 s.

6.3. SINTESI DI RETI CORRETTRICI 6.3 8 In the figure it is also reported (blue dash-dotted thick line) the step response of the system C b (z)hg(z) controlled in closed loop, when the discrete compensator C b (z) is obtained from C 1 (s) by using the bilinear correspondence between the s and z complex variables: C b (z) = (1 +.86s) (1 +.117s) s= 2 T z 1 z+1 = 1.762z 1.462.384z.84. Step responses of the considered systems controlled in closed loop. Sampling period: T =.15 s. Step response: T =.15 s 1.2 1.8 y(t).6.4.2.5 1 1.5 2 2.5 3 3.5 4 Time (s) Matlab file Formule di Inversione discrete.m : Esempio di applicazione delle formule di inversione discrete clear all close all Mf=6; Mb=1; Fb=pi+Mf*pi/18; B=Mb*exp(j*Fb); thick=1.8; thin=.5; Tfin=4; s=tf( s ); gs=25/(s*(s+1)*(s+1)); Specifica di progetto Scelta del punto B Linea spessa Linea sottile Durata della simulazione Funzione di trasferimento gs

6.3. SINTESI DI RETI CORRETTRICI 6.3 9 gs=feedback(gs,1); T=.15; z=tf( z,t); gz=c2d(gs,t, zoh ) wa=2.2; A=evalfr(gz,exp(T*wa*j)); Ma=abs(A); Fa=angle(A); Sistema retroazionato gs=gs/(1+gs) Periodo di campionamento Si discretizza (gz) il sistema gs Scelta della pulsazione Scelta del punto A M=Mb/Ma Calcolo dei parametri per le formule di inversione phi=fb-fa-2*pi; phi*18/pi [alfa,beta]=alfa_beta(m,phi*18/pi,wa,t) grz=(1+alfa*(z-1))/(1+beta*(z-1)); Rete correttrice tempo discreto Ac=evalfr(gs,wa*j); Scelta del punto Ac Mac=abs(Ac); Fac=angle(Ac); Mc=Mb/Mac; Calcolo dei parametri per le formule di inversione phic=fb-fac; [tau1,tau2]=tau1tau2(mc,phic*18/pi,wa); grs=(1+.86*s)/(1+.117*s); Rete correttrice tempo continuo [tau1,tau2]=tau1tau2(m,phi*18/pi,wa) grs1=(1+tau1*s)/(1+tau2*s) Rete correttrice tempo continuo grsz=c2d(grs1,t, prewarp,wa) minreal(grz) gsr=grs*gs; gsr=feedback(gsr,1); Sistema tempo continuo retroazionato gsr=gsr/(1+gsr) gzr=grz*gz; gzr=feedback(gzr,1); Sistema tempo discreto retroazionato gzr=gzr/(1+gzr) k=1; tau1=.86; tau2=.117; 3) Metodo della trasformazione bilineare a=k*(t+ 2*tau1); b=k*(t-2*tau1); c=t+2*tau2; d=t-2*tau2; grz3=(a*z+b)/(c*z+d) grgz3=grz3*gz; gz3=feedback(grgz3,1); Sistema con rete discretizzata: gz3=grgz3/(1+grgz3) figure(1); hold off; clf [y,t]=step(gsr,tfin); Risposta del sistema continuo con rete correttrice h=plot(t,y, k ); hold on set(h, Linewidth,thin) [y,t]=step(gz3,tfin); Risposta del sistema discreto con rete discretizzata h=stairs(t,y, b-. ); hold on set(h, Linewidth,thick) [y,t]=step(gzr,tfin); Risposta del sistema discreto con rete correttrice h=stairs(t,y, r ); hold on set(h, Linewidth,thick) plot([ 1],[1 1], : ) axis([ Tfin 1.3]) xlabel( Time (s) ) ylabel( y(t) ) title([ Step response, T= num2str(t)]) figure(2); hold off; clf

6.3. SINTESI DI RETI CORRETTRICI 6.3 1 [re,im]=nyquist(gs,{.1,1}); Nyquist del sistema continuo senza rete correttrice h=plot(re(:,:),im(:,:), k-- ); hold on set(h, Linewidth,thin) [re,im]=nyquist(gsr,{.1,1}); Nyquist del sistema continuo con rete correttrice h=plot(re(:,:),im(:,:), k ); hold on set(h, Linewidth,thin) [re,im]=nyquist(gz,{.1,1}); Nyquist del sistema discreto senza rete correttrice h=plot(re(:,:),im(:,:), r-- ); hold on set(h, Linewidth,thick) [re,im]=nyquist(gzr,{.1,1}); Nyquist del sistema discreto con rete correttrice h=plot(re(:,:),im(:,:), r ); hold on set(h, Linewidth,thick) [re,im]=nyquist(grgz3,{.1,1}); Nyquist del sistema discreto con rete discretizzata h=plot(re(:,:),im(:,:), b-. ); hold on set(h, Linewidth,thick) Dominio_Rete_Ant_Nyq(Mf,Mb) Graficazione del dominio di ammissibilit plot(a, * ); Graficazione del punto A plot(b, * ); Graficazione del punto B V=[-1.5.5-1.1.4]; dx=(v(2)-v(1))/4; dy=(v(4)-v(3))/3; freccia(real(a),imag(a),real(b),imag(b),dx,dy) axis(v) plot(-1,, * ) plotaxis(v) xlabel( Real ) ylabel( Imag ) title([ Nyquist. T= num2str(t)]) text(real(a)+.2,imag(a)-.2, A ) text(real(b)-.8,imag(b), B ) text(-1-.6,.2, m1 ) C=evalfr(gz,exp(T*.7*wa*j)); text(real(c)-.8,imag(c), C ) D=evalfr(gzr,exp(T*.9*wa*j)); text(real(d)-.8,imag(d), D ) text(-1,-.65, G ) File Matlab alfa beta.m function [alfa,beta]=alfa_beta(m,phi,omega,t) [alfa,beta]=alfa_beta(m,phi,omega,t) calcola alfa, beta di una rete correttrice discreta M : guadagno phi : fase omega : pulsazione T : periodo di campionamento phirad=phi*pi/18; tw1=(m-cos(phirad))/(sin(phirad)); tw2=(cos(phirad)-1/m)/(sin(phirad)); tau1_tau2=[tw1/omega tw2/omega ] alfa=.5+tw1/(2*tan(omega*t/2)); beta=.5+tw2/(2*tan(omega*t/2)); return