Miniature Ambient Ionization Mass Spectrometry System For Analysis of Microorganisms

Similar documents
Chemical Aspects of Mass Spectrometry

Rapid Evaporative Ionization Mass Spectrometry Imaging Platform for Direct Mapping from Bulk Tissue and Bacterial Growth Media

Supporting Information

Griffin Analytical Technologies

Planar chromatography meets direct ambient mass spectrometry: current trends

Talk Line-up. MassTech, Inc Columbia Gateway Drive Columbia, Maryland (443) Goals for MT Explorer 50 Development

Dr. A. Peter Snyder and Dr. Rabih E. Jabbour Private Citizens June 26, 2013

Accelerated Bimolecular Reactions in Microdroplets Studied by. Desorption Electrospray Ionization Mass Spectrometry

BIOL 3702L: MICROBIOLOGY LABORATORY SCHEDULE, SUMMER 2015

Evaluation of the efficiency of Mxxxx as a barrier against microrganisms crossing

3M Food Safety Technical Bulletin

Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS

M M e M M H M M H. Ion Sources

Laboratory Exercise # 7: Aseptic Technique

Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry

TANDEM MASS SPECTROSCOPY

Supporting Information

Xinyu LIU, Peter JOZA, Andrew MASTERS, Bill RICKERT

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Exactive mass spectrometer (Thermo Fisher Scientific Inc., Bremen, Germany)

Handheld Miniature Ion Trap Mass Spectrometers

ENTEROBACTER AEROGENES UNKNOWN BACTERIA FLOW CHART UNKNOWN LAB REPORT, MICROBIOLOGY ENTEROBACTER AEROGENES

Chemistry Instrumental Analysis Lecture 37. Chem 4631

Pharmaceutical Microbiology Forum Newsletter Vol. 12 (4) Page 3 of 14 (NCIMB 8545, CIP NBRC. Salmonella enterica ssp typhimurium

Study of Non-Covalent Complexes by ESI-MS. By Quinn Tays

colony size color morphology haemolysis S. aureus S. epidermidis

The AccuTOF -DART 4G: The Ambient Ionization Toolbox

Simultaneous Determination of Paraquat and Diquat in Environmental Water Samples by HPLC-MS/MS

LC-MS Based Metabolomics

ANTIMICROBIAL TESTING. E-Coli K-12 - E-Coli 0157:H7. Salmonella Enterica Servoar Typhimurium LT2 Enterococcus Faecalis

Direct Analysis in Real Time (DART) A New Ionization Technique

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

Carbon Carbon Bond Activation in Saturated Hydrocarbons by Field-Assisted Nitrogen Fixation Guangtao Li, Xin Li, Zheng Ouyang, and R.

Application Note FTMS-56 Reproducibility of Crude Oil Characterization by Flow Injection APPI-FT-ICR Mass Spectrometry

An EZ-DART spectrum was taken for both fifty (SI figure 2a) and twenty (figure 3 and

Computer-assisted analysis of complex natural product extracts

Direct Analysis using Paper-Spray Mass Spectrometry: Method Development for the Rapid Screening of Drugs of Abuse for Forensic Toxicology

Toxicity, Teratogenic and Estrogenic Effects of Bisphenol A and its Alternative. Replacements Bisphenol S, Bisphenol F and Bisphenol AF in Zebrafish.

Lecture 15: Introduction to mass spectrometry-i

High-Throughput Protein Quantitation Using Multiple Reaction Monitoring

Supplementary Figures

Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma

_ + Discriminates aerobic organisms that produce catalase to degrade hydrogen peroxide into water and oxygen

3M Food Safety Technical Bulletin

Nanoporous GaN-Ag Composite Materials Prepared by Metal-Assisted Electroless Etching

ABSTRACT INTRODUCTION

INTERPRETATION OF THE GRAM STAIN

Toronto General Hospital ANTIBIOGRAM Emergency Department January 1, December 31, 2016

Introduction of Hitachi Chromaster 5610 MS Detector for High Performance Liquid Chromatograph

Introduction. Chapter 1. Learning Objectives

NUT-TTC/EMB Code 5541

Supporting information

Supporting Information

EFFECT OF MICROWAVES ON MOULDS ISOLATED FROM SURFACES

Abstract. Experimental Sample Preparation

ID Membranes for Microbial Rapid Identification

Sample Date: March 30, 2018 Date Received: March 31, 2018 Date of Report: April 9, 2018 (877) Fax: (877)

LC-MS/MS Analysis of Phytocannabinoids and their

The Effect of Static Magnetic Field on E. coli, S. aureus and B. subtilis Viability

Mass Spectrometry (MS)

Analytical Technologies and Compound Identification. Daniel L. Norwood, MSPH, PhD SCĪO Analytical Consulting, LLC.

THE IDENTIFICATION OF TWO UNKNOWN BACTERIA AFUA WILLIAMS BIO 3302 TEST TUBE 3 PROF. N. HAQUE 5/14/18

Assay Robustness Improvement for Drug Urinalysis Using FAIMS and H-SRM on a Triple- Quadrupole Mass Spectrometer

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization.

Solid Phase Micro Extraction (SPME) of Opiates from Urine: Coupling SPME and DESI-MS/MS Detection

Supporting Information

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma

Laboratory Report. Thus both gram-positive and gram-negative bacteria, yeast, dermatophytes and mould are detected.

Originally published as:

AB SCIEX SelexION Technology Used to Improve Mass Spectral Library Searching Scores by Removal of Isobaric Interferences

Ionization Suppression and Recovery in Direct Biofluid Analysis using Paper Spray Mass Spectrometry

Microbiological Testing Summary

Analysis of Pharmaceuticals and Personal Care Products in River Water Samples by UHPLC-TOF

Mass Spectrometry. Electron Ionization and Chemical Ionization

The Use of the ACQUITY QDa Detector for a Selective, Sensitive, and Robust Quantitative Method for a Potential Genotoxic Impurity

Snowy Range Instruments

Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry

COPLEY S C I E N T I F I C. A multi-function aerosol system with aerosol generation, classification and monitoring capabilities for:

ANTIMICROBIAL ACTIVITY OF BIOACTIVE COMPONENT FROM FLOWER OF LINUM CAPITATUM KIT UDC : 543

INTRODUCTION MATERIALS & METHODS

1. The range of frequencies that a measurement is sensitive to is called the frequency

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

Quantitative Screening of 46 Illicit Drugs in Urine using Exactive Ultrahigh Resolution and Accurate Mass system

IRMS. perspective. Isotope Ratio Mass Spectrometry.

3.1: Place of collection of entomopathogenic nematode isolates : Measurement of 12 bacterial isolates 45

Tomorrow s quantitation with the TSQ Fortis mass spectrometer: quantitation of phenylephrine hydrochloride for QA/QC laboratories

SOLVENT FREE MICROWAVE ASSISTED SYNTHESIS OF A NOVEL BIOLOGICAL AGENT

Improved Screening for 250 Pesticides in Matrix using a LC-Triple Quadrupole Mass Spectrometer

Analysis of Polyphenols in Saffron Petal Extracts with UHPLC/UV/MS

GPC/MS. Analysis of PET

Lecture 8: Mass Spectrometry

Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples

Choosing the metabolomics platform

Amy Nutter, Applications Chemist; Teledyne Tekmar P a g e 1

Mass Spectrometry in MCAL

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples

Technical Note. Introduction

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Mass spectrometric determination of the surface compositions of ethanol water mixtures

Transcription:

Miniature Ambient Ionization Mass Spectrometry System For Analysis of Microorganisms R. Graham Cooks 1 and Zheng Ouyang 2 1 Department of Chemistry and 2 Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN 4796

Mass Spectrometry Analysis Instrument Systems and Analytical Procedures Procedure Instrument Automation Sample Prep Varies significantly, dependent on the sample matrix and target analyst Multiple devices Poor GC/LC Relativestandard, analyte dependent Integrated system/expensive/ Large Highly automated MS Highly standard,analyte dependent Integrated system/expensive/ Large Highly automated MScanbesmall Example of a handheld Mini 11 mass spectrometer Purdue University L. Gaoet al. Anal. Chem. 28 doi: 1.121/ac81275x

Miniature Mass Spectrometer Pumping technology Mini 11: Weight: 1 lbs Size: 1" 6" 5" Power Consumption: <W Mass Range: 8/15 Atmospheric pressure ionization Mini mass spectrometers are maturing quickly However, mass spectrometer itself does not perform analysis independently

Approach for Autonomous Analysis: Ambient Ionization + Mini MS Example: blood analysis Target Analysis Mini 12: Complete Analysis System W12.5 x H16 x D22.5 Weight lbs Power: 65W average Therapeutic Drug Monitoring Amitriptyline in whole blood LOQ: 7.5 ng/ml RSD: < 1% Analysis Time: < S Solvent: < 2µL

Possible Embodiment for Aerosol/Bacteria Analysis Collection of Aerosols Air Flow Consumable Sample Cartridge With Paper Substrate Paper Spray MS Analysis DC 4 kv Spray Solvent MS Inlet

Mini Ambient MS Approach: Tier 1, Tier 2 or Tier 3? Ambient Ionization Methods 24-25: two 213: More than Flowprobe LESA (Liquid Extraction Surface Analysis) Commercial Products DESI (Desorption Electrospray Ionization) DART (Direct Analysis in Real Time) LAESI (Laser Ablation Electrospray Ionization )

Mini Ambient MS Approach: Tier 1, Tier 2 or Tier 3? Miniature MS (-ters or systems) Many mini MS capable of analysis of gas samples Systems with Atmospheric Pressure Interfaces Mini 12 PS-MS Griffin DESI-MS Purdue University Microsaic Systems plc

Mini Ambient MS Approach: Tier 1, Tier 2 or Tier 3? Find biomarkers that Can be efficiently sampled and ionized by ambient ionization methods Can be used for high specificity bacteria classification/identification Lipid profiles can be used to characterize disease state Cancer margin diagnosis J. S. Wiseman, et al. Angew. Chem. Int. Ed.26 45,7188-7192 Tumor grade and cancer cell concentration Eberlin, L. S. et al. Cancer Res 212, 72 645-654 Can lipid profiles be used for bacteria classification? YES, Lipid profiles have been used for microorganism ID by ambient ionization (but not the methods of TS and PS used here): Cooks, R. G., et al. Faraday Discuss.211, 149, 247-267. Song, Y., et al. Chem. Commun.27, 61-63. Zhang, J. I., et al. Int. J. Mass. Spectrom.211, 31, 37-44.

Real-Time Microorganism Analysis by DESI DESI-MS of freshly harvested cells dried on PTFE In vivo recognition of Bacillus subtilis by DESI-MS (a) E. coli (b) P. aeruginosa Bacillus subtilis as a biofilm growing on agar nutrient: simple, high quality mass spectra dominated in both the positive and negative ion modes by signals due to the cyclic lipopeptide, Surfactin. J. Mass Spectrom. 25,, 1261-1275 Analyst. 29, 134, 838-841

DESI-MS of Microorganisms: Statistical Analysis PCA plot and loading plot of three replicate measurements, collected in the negative ion mode over a period of 3 days of analyses and combined No derivatization, high reproducibility and in situ identification including sub-species differentiation bacteria (positive ion mode) Inter-day evaluation J. Mass Spectrom. 27, 42, 1186-1193. PCA score plot of three strains of Escherichia coli and two strains of Salmonella typhimurium Chem. Commun. 27, 1, 61-63

Touch Spray for Direct Microorganism Detection Relative Abundance 1 8 2 1 8 2 618.5 65.58 673. 719.58 747.58 688.5 773.67 719.58 747.58 Citrobacter farmeri (-) TS-MS Single Scan 865.58 848.92 943.75 819.58 924.67 955.67 983.83 Citrobacter farmeri (-) TS-MS 2 min average 688.5 773.5 955.58 983.67 6.75 65.5 794.92 819.33 834.75 888.58 927.67 65 7 75 8 85 9 95 1 Current LOD ca. 1 4 cfu Ahmed Hamid 11

(-) TS-MS 1 8 2 8 2 1 Relative Abundance1 8 2 693.5 77.5 721.5 735.5 763.58 621.92 661.83 773.25 831.83 851.42 887.42 913.67 961.25 982.58 6.75 6.8 719.58 747.58 688.5 773.5 955.58 983.67 65.5 794.92 819.33 834.75 888.58 927.67 65.42 685.5 719.58 747.5 751.58 819.5 Staphylococcus aureus Gram Positive Bacteria Citrobacter farmeri Gram Negative Bacteria Candida albicans Yeast 8.42 834.5 891.5 932.25 864.42 9.58 982.5 65 7 75 8 85 9 95 1 12

(±) TS-MS Gram Negative Bacteria 1 719.5 Escherichia coli Relative Abundance 8 2 1 8 PG 75.5 747.5 773.5 65.42 819.5 97.42 117.17 121.67 1384.33 1487.75 167.58 125.58 158.25 712.42 PE 674.5 7.42 PE dimers 749.58 2 766.42 1429.33 911.5 652.33 826.8 1122.5 1387.33 968.25 17.17 117.58 1243.58 1549.58 7 8 9 1 11 12 13 1 15 1 13

(-) TS-MS Gram Positive Bacteria Relative Abundance 1 8 2 1 8 2 1 8 613.51 633.45 PG (3:) 691.46 693.47 77.49 719.49 PG (31:) 721.5 723.51 735.52 661.48 749.54 647.47 679.46 763.55 719.49 721.5 723.51 735.52 749.54 2.18 678.1 693.47 77.49 751.55 614.51 628.53 65.39 662.1 766.11 721.5 PG (32:) PG (33:) PG (34:) PG (33:1) Staphylococcus aureus 783.51 8.5 812.9 834.92 847.51 Staphylococcus epidermidis 784.15 84.7 819.43 827.39 845.91 Staphylococcus hominis 719.49 723.51 693.47 2 77.49 735.52 749.54 1.5 685.32 628.53 647.47 662.1 678.1 755.49 781.5 791.51 83.86 819.44 834.41 62 6 6 68 7 72 7 7 78 8 82 8 14

(-) TS-MS Gram Positive Bacteria 1 8 721.92 749.92 Staphylococcus capitis 2 8 2 1 Relative Abundance1 8 736. 819.75 686.25 65.83 764. 666.83 78.75 774.75 811.83 618.58 847.8 721.58 693.58 77.58 735.58 623. 661.92 679.58 749.58 641.75 763.67 783.17 811.5 837.17 849.42 721.58 Staphylococcus lugdenensis Staphylococcus saprophyticus 749.67 693.58 735.67 661.92 77.58 763.67 2 616.75 65.58 685.5 777.75 89. 819.42 837.67 62 6 6 68 7 72 7 7 78 8 82 8 15

R e l a t i v e A b u n d a n c e 1 8 2 1 8 6.75 (-) MS PG (3:1) 719.58 747.58 688.5 773.5 955.58 983.67 819.33 65.5 794.92 927.67 834.75 888.58 (-) MS PS (26:) 688.5 PG (32:1) 719.5 PG (34:1) 747.5 TS-MS Gram Negative Bacteria PG (33:1) PG (36:2) Citrobacter farmeri Citrobacter freundii 2 65.5 714.5 773.5 7.83 819.5 859.33 94.25 922.58 959.8 999.58 65 7 75 8 85 9 95 1 R e l a t i v e A b u n d a n c e 712.42 1 [PE(33:1)+H + ] 8[PE (32:1)+H + ] 74.42 69.33 744.8 2 1 8 [PE (32:1)+Na + ] 1474.42 78.42 11.25 652.33 911.5 843.42 18.58 1122.5 1379.33 1314.33 1489.42 1169.42 1581.58 712.42[PE (32:1)+Na + ] 674.5 [PE(33:1)+Na + ] 726.58 738.5 [PE (34:1)+Na + ] 7.5 (+) MS (+) MS PE dimers PE dimers 78.5 911.5 11.33 2 613.5 826.8 18.58 169.58 1122.58 1169.75 1455.5 1328.75 1526.58 7 8 9 1 11 12 13 1 15 1 16

TS-MS Gram Negative Bacteria 1 (-) MS 719.58 Proteus penneri 1 712.5 (+) MS R e l a t i v e A b u n d a n c e 8 2 1 8 2 6.67 625.25 (-) MS 688.5 747.58 723.58 685.5 75.58 65.5 733.58 756.42 777.42 819.5 84.33 842.5 733.5 719.5 747.5 R e l a t i v e A b u n d a n c e 8 2 1 Proteus vulgaris 75.58 688.25 772.92 652.42 685.5 756.8 789.92 8.83 832.92 617. 628.25 843.75 62 6 6 68 7 72 7 7 78 8 82 8 8 69.33 674.5 726.5 11.33 814.25 972.25 97.5 1429.33 664.33 169.58 1122.58 1387.42 121.92 1536.67 74.33 69.33 726.5 674.5 744.8 PE PE 814.17 (+) MS PE dimers PE dimers 1415.33 2 652.33 1393.25 1443.42 826.17 911.5 15.58 11.42 1537.83 1231.33 1366.33 7 8 9 1 11 12 13 1 15 1 17

Positive ion Touch Spray-MS (+) Touch Spray-MS Single touch 3D PLS-DA Normalized to TIC -1 o Separation of Fungi & Bacteria o Separation between Gram Negative and Gram Positive Bacteria o Separation of Gram Negative Species Fungi- Candida Gram Negative- Proteobacteria Gram Positive- Firmicutes 18

R elative A bundance 1 8 2 1 8 Transfer from Touch Spray to Paper Spray (-) Escherchia coli PG (32:1) 719.58 719.5 PG (34:1) 747.58 PG (3:1) 691.5 PG (33:1) 745.5 733.5 PG (31:1) Methanol Solvent 75.58 688.58 773.5 685.42 734.58 PG (35:1) 693.5 717.5 731.67 761.5 774.67 743.5 756.33 785.58 798.58 72.58 733.58 745.42 75.5 748.67 688.58 Methanol Solvent 773.58 2 693.5 76.5 761.5 731.67 774.58 694.58 77.5 759.5 737.33 762.83 786.8 798.25 68 69 7 71 72 73 7 75 7 77 78 79 8 19 747.42 Touch Spray Single Scan (.3 s) Intensity: 5x1 4 Linear Trap Quad mass spectrometer Single touch from the colony (.1 of the colony size) to the teasing probe Paper Spray Single Scan (.3 s) Intensity: 1x1 3 Linear Trap Quad mass spectrometer Single colony to the filter paper (.2 µm pore size)

Relative Abundance 1 8 2 1 8 [PE (32:1)+H + ] 69.33 Transfer from Touch Spray to Paper Spray (+) Escherchia coli [PE (33:1)+H + ] 74.42 674.5 686.5 712.42 7.5 749.5 911.5 766.33 614.42 664.17 82.5 826.25 873.58 922.92 953.8 986.5 [PE(32:1)+Na + ] 712.58 [PE (32:1)+K + ] 728.5 [PE(33:1)+Na + ] 726.58 [PE(31:1)+Na + ] 698.58 674.58 [PE (34:1)+Na + ] 7.5 Touch Spray Single Scan (.6s) Intensity: 4x1 4 Linear Triple Quad mass spectrometer Single touch from the colony (.1 of the colony size) to the teasing probe Methanol Solvent Paper Spray Single Scan (.6s) Intensity: 2x1 4 Linear Triple Quad mass spectrometer Single colony to the filter paper (.2 µm pore size) Methanol Solvent 2 766.58 836.17 624.83 642.5 793.42 864.8 97.5 933.83 959.5 985.42 65 7 75 8 85 9 95 1 2

(-) PS-MS Gram Positive Bacteria 1 721.92 Staphylococcus capitis R elative A bundance 8 2 693.92 77.92 735.92 749.83 611.42 639.33 763.92 62.17 657.5 667.25 769.5 85.17 823.42 851.25 1 693.58 721.58 Staphylococcus saprophyticus 8 2 77.58 735.5 749.58 619.25 65.5 688.92 763.67 819.5 794.75 85.92 62 6 6 68 7 72 7 7 78 8 82 8 8 21

(±) PS-MS Gram Negative Bacteria: Broth Filration 1ml of bacteria in TSB paper spray_broth_ecoli_3 #176-27 RT:.64-.73 AV: 32 NL: 5.12E3 F: ITMS - p ESI Full ms [.-1.] 1 9 8 Escherichia coli (-) PS-MS 719.58 747.58 773.58 (.2 µm) Relative Abundance 7 5 3 9.92 629.33 688.5 682.5 726.58 745.58 756.5 72.58 733.5 819.5 65.5 841.5 666.5 794.92 657.5 814. 762.42 778.58 674.5 811.5 836.8 2 1 HV Solvent Sample.2µm Paper Charged droplets with analyte To Mass Analyzer 62 6 6 68 7 72 7 7 78 8 82 8 F: ITMS + p ESI Full ms [2.-2.] 712.5 1 674.5 Relative Abundance 9 8 7 5 7.5 749.58 766.42 911.58 (+) PS-MS 3 2 1 641. 82.5 891.42 927.5 949.42 1122.58 185. 124.5 1146.58 1429.33 1243.67 1474.5 1291.92 137.5 1489.75 1552.75 7 8 9 1 11 12 13 1 15 1 22

Automated Library Search and Multivariate Statistics Sample MS Data Identification Microorganism ID T: ITMS - p ESI Full ms [15.-2.] R e l a t i v e A b u n d a n c e 1 9 8 7 5 672.8 719.58 733.5 747.58 TS Spectrum Neg. Mode E. Coli 3 75.58 773.5 688.58 2 637.17 852.67 1 65.5 761.5 816.17 953.8 992.42 798.58 82.17 619.42 874.8 889.42 928.92 979.83 65 7 75 8 85 9 95 1 856.67 Fungi Gram Negative Microorganism ID: E. coli Gram Positive Probability Match: 99.9% Statistic Analysis Mini Ambient Ionization MS Standard MS Data

Miniature Ambient Ionization MS: to get ready Develop and optimization of data analysis Full characterization of bacteria analysis using ambient ionization Sampling ionization condition Matrix effects Multiple microorganisms in same sample Detection limits Development of mini ambient MS 24

Acknowledgements Data and interpretation Ahmed Hamed and Alan Jarmusch Funding from Institut biomèrieux, Lyon, France Collaboration and technical assistance Gaspard Gervasi, biomerieux(marcy l Etoile, France) Samples and technical assistance from David Pincus, biomerieux (St Louis, MO)