PART ONE. Solutions to Exercises

Similar documents
Introduction to Econometrics (4th Edition) Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 2*

Econometric Methods. Review of Estimation

Chapter 5 Properties of a Random Sample

X ε ) = 0, or equivalently, lim

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

The expected value of a sum of random variables,, is the sum of the expected values:

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

Class 13,14 June 17, 19, 2015

ρ < 1 be five real numbers. The

Law of Large Numbers

Parameter, Statistic and Random Samples

Module 7. Lecture 7: Statistical parameter estimation

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Chapter 4 Multiple Random Variables

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Chapter 8: Statistical Analysis of Simulated Data

Third handout: On the Gini Index

Lecture Notes Types of economic variables

Lecture 3 Probability review (cont d)

Lecture 3. Sampling, sampling distributions, and parameter estimation

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

Exchangeable Sequences, Laws of Large Numbers, and the Mortgage Crisis.

Chapter 4 Multiple Random Variables

CHAPTER VI Statistical Analysis of Experimental Data

Section 2 Notes. Elizabeth Stone and Charles Wang. January 15, Expectation and Conditional Expectation of a Random Variable.

Optimal Constants in the Rosenthal Inequality for Random Variables with Zero Odd Moments.

2SLS Estimates ECON In this case, begin with the assumption that E[ i

Chapter 5 Properties of a Random Sample

Continuous Distributions

Lecture 02: Bounding tail distributions of a random variable

ε. Therefore, the estimate

Lecture 4 Sep 9, 2015

Lecture 2: The Simple Regression Model

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

Lecture Note to Rice Chapter 8

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Random Variables and Probability Distributions

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Special Instructions / Useful Data

9.1 Introduction to the probit and logit models

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

is the score of the 1 st student, x

SPECIAL CONSIDERATIONS FOR VOLUMETRIC Z-TEST FOR PROPORTIONS

STK4011 and STK9011 Autumn 2016

,m = 1,...,n; 2 ; p m (1 p) n m,m = 0,...,n; E[X] = np; n! e λ,n 0; E[X] = λ.

Functions of Random Variables

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

BIOREPS Problem Set #11 The Evolution of DNA Strands

1. The weight of six Golden Retrievers is 66, 61, 70, 67, 92 and 66 pounds. The weight of six Labrador Retrievers is 54, 60, 72, 78, 84 and 67.

Point Estimation: definition of estimators

Introduction to Probability


Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

The Mathematical Appendix

STA302/1001-Fall 2008 Midterm Test October 21, 2008

Lecture 9: Tolerant Testing

ENGI 4421 Propagation of Error Page 8-01

Arithmetic Mean Suppose there is only a finite number N of items in the system of interest. Then the population arithmetic mean is

Chapter 13, Part A Analysis of Variance and Experimental Design. Introduction to Analysis of Variance. Introduction to Analysis of Variance

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =.

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Chapter 3 Sampling For Proportions and Percentages

Chapter -2 Simple Random Sampling

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Chapter 10 Two Stage Sampling (Subsampling)

CHAPTER 3 POSTERIOR DISTRIBUTIONS

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

1 Onto functions and bijections Applications to Counting

Linear Regression with One Regressor

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

Chapter -2 Simple Random Sampling

Bayes (Naïve or not) Classifiers: Generative Approach

18.657: Mathematics of Machine Learning

Sampling Theory MODULE X LECTURE - 35 TWO STAGE SAMPLING (SUB SAMPLING)

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

Simulation Output Analysis

Summary of the lecture in Biostatistics

MEASURES OF DISPERSION

Simple Linear Regression

1 Solution to Problem 6.40

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

The Occupancy and Coupon Collector problems

ANSWER KEY 7 GAME THEORY, ECON 395

Mu Sequences/Series Solutions National Convention 2014

Mechanics of Materials CIVL 3322 / MECH 3322

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 17

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Transcription:

PART ONE Soutos to Exercses

Chapter Revew of Probabty Soutos to Exercses 1. (a) Probabty dstrbuto fucto for Outcome (umber of heads) 0 1 probabty 0.5 0.50 0.5 Cumuatve probabty dstrbuto fucto for Outcome (umber of heads) 0 0 1 1 Probabty 0 0.5 0.75 1.0 (c) = E ( ) (0 0.5) (1 0.50) ( 0.5) 1.00 Usg Key Cocept.3: var( ) E( ) [ E( )], ad E ( ) (0 0.5) (1 0.50) ( 0.5) 1.50 so that var( ) E( ) [ E( )] 1.50 (1.00) 0.50.. We kow from Tabe. that Pr( 0) 0, Pr( 1) 0 78, Pr( 0) 0 30, Pr( 1) 0 70. So (a) E( ) 0 Pr ( 0) 1 Pr ( 1) 0 0 1 0 78 0 78, E( ) 0 Pr ( 0) 1 Pr ( 1) 0 0 30 1 0 70 0 70 E[( ) ] (0 0.70) Pr ( 0) (1 0.70) Pr ( 1) ( 0 70) 0 30 0 30 0 70 0 1 E[( ) ] (0 0.78) Pr ( 0) (1 0.78) Pr ( 1) ( 0 78) 0 0 0 78 0 1716 (c) Tabe. shows Pr( 0, 0) 0 15, Pr( 0, 1) 0 15, Pr( 1, 0) 0 07, Pr( 1, 1) 0 63. So

4 Stock/Watso - Itroducto to Ecoometrcs - Bref Edto cov(, ) E[( )( )] (0-0.70)(0-0.78)Pr( 0, 0) (0 0 70)(1 0 78)Pr ( 0 1) (1 0 70)(0 0 78)Pr ( 1 0) (1 0 70)(1 0 78)Pr ( 1 1) ( 0 70) ( 0 78) 0 15 ( 0 70) 0 0 15 0 30 ( 0 78) 0 07 0 30 0 0 63 0 084, 0 084 cor (, ) 0 445 0 1 0 1716 3. For the two ew radom varabes W 3 6 ad V 0 7, we have: (a) (c) 4. (a) WV E( V) E(0 7 ) 0 7 E( ) 0 7 0 78 14 54, E( W) E(3 6 ) 3 6 E( ) 3 6 0 70 7 var(3 6 ) 6 36 0 1 7 56, W var(0 7 ) ( 7) 49 0 1716 8 4084 V cov (3 6, 0 7 ) 6( 7) cov(, ) 4 0 084 3 58 WV 3 58 cor ( W, V ) 0 445 7 56 8 4084 3 3 3 E( ) 0 (1 p) 1 p p k k k E( ) 0 (1 p) 1 p p (c) E ( ) 0.3 W var( ) E( ) [ E( )] 0.3 0.09 0.1 Thus, 0.1 0.46. V To compute the skewess, use the formua from exercse.1: Ateratvey, Thus, skewess E( ) E( ) 3[ E( )][ E( )] [ E( )] 3 3 3 3 0.3 3 0.3 0.3 0.084 3 3 3 E ( ) = [(1 0.3) 0.3] [(0 0.3) 0.7] 0.084 3 3 3 E ( ) /.084/0.46 0.87.

Soutos to Exercses Chapter 5 To compute the kurtoss, use the formua from exercse.1: Ateratvey, Thus, kurtoss s E( ) E( ) 4[ E( )][ E( )] 6[ E( )] [ E( )] 3[ E( )] 4 4 3 4 3 4 0.3 4 0.3 6 0.3 3 0.3 0.0777 4 4 4 E ( ) = [(1 0.3) 0.3] [(0 0.3) 0.7] 0.0777 4 4 4 E ( ) / =.0777/0.46 1.76 5. Let deote temperature F ad deote temperature C. Reca that 0 whe 3 ad 100 whe 1; ths mpes (100/180) ( 3) or 17.78 (5/9). Usg Key Cocept.3, 70 F mpes that 17.78 (5/9) 70 1.11 C, ad 7 F mpes (5/9) 7 3.89 C. 6. The tabe shows that Pr( 0, 0) 0 045, Pr( 0, 1) 0 709, Pr( 1, 0) 0 005, Pr( 1, 1) 0 41, Pr( 0) 0 754, Pr( 1) 0 46, Pr( 0) 0 050, Pr( 1) 0 950. (a) Uempoymet Rate (c) Cacuate the codtoa probabtes frst: The codtoa expectatos are E( ) 0 Pr( 0) 1 Pr( 1) 0 0 050 1 0 950 0 950 #(uempoyed) #(abor force) Pr( 0) 0 050 1 0 950 1 E( ) Pr( 0, 0) 0 045 Pr( 0 0) 0 0597, Pr( 0) 0 754 Pr( 0, 1) 0 709 Pr( 1 0) 0 9403, Pr( 0) 0 754 Pr( 1, 0) 0 005 Pr( 0 1) 0 003, Pr( 1) 0 46 Pr( 1, 1) 0 41 Pr( 1 1) 0 9797 Pr( 1) 0 46 E( 1) 0 Pr ( 0 1) 1 Pr ( 1 1) 0 0 003 1 0 9797 0 9797, E( 0) 0 Pr ( 0 0) 1 Pr ( 1 0) 0 0 0597 1 0 9403 0 9403 (d) Use the souto to part,

6 Stock/Watso - Itroducto to Ecoometrcs - Bref Edto Uempoymet rate for coege grads 1 E( 1) 1 0.9797 0.003. Uempoymet rate for o-coege grads 1 E( 0) 1 0.9403 0.0597. (e) The probabty that a radomy seected worker who s reported beg uempoyed s a coege graduate s Pr( 1, 0) 0 005 Pr( 1 0) 0 1 Pr( 0) 0 050 The probabty that ths worker s a o-coege graduate s Pr( 0 0) 1 Pr( 1 0) 1 0 1 0 9 (f) Educatoa achevemet ad empoymet status are ot depedet because they do ot satsfy that, for a vaues of x ad y, Pr( y x) Pr( y ) For exampe, Pr( 0 0) 0 0597 Pr( 0) 0 050 7. Usg obvous otato, C M F ; thus ad C M F C M F cov( MF, ). Ths mpes (a) C 40 45 $85,000 per year. (c) cor M F so that Cov ( M, F) cor ( M, F ). Thus Cov( M, F) (, ), M F M F Cov ( M, F ) 1 18 0.80 17.80, where the uts are squared thousads of doars per year. C M F cov( MF, ), so that C 1 18 17.80 813.60, ad C 813.60 8.54 thousad doars per year. (d) Frst you eed to ook up the curret Euro/doar exchage rate the Wa Street Joura, the Federa Reserve web page, or other faca data outet. Suppose that ths exchage rate s e (say e 0.80 euros per doar); each 1$ s therefore wth ee. The mea s therefore e C ( uts of thousads of euros per year), ad the stadard devato s e C ( uts of thousads of euros per year). The correato s ut-free, ad s uchaged. 8. E ( ) 1, 1 var( ) 4. Wth Z ( 1), m s Z 1 1 1 E ( 1) ( m 1) (1 1) 0, 1 1 1 var ( 1) s 4 1 4 4 Z

Soutos to Exercses Chapter 7 9. Vaue of Probabty 14 30 40 65 Dstrbuto of Vaue of 1 0.0 0.05 0.10 0.03 0.01 0.1 5 0.17 0.15 0.05 0.0 0.01 0.40 Probabty dstrbuto of 8 0.0 0.03 0.15 0.10 0.09 0.39 0.1 0.3 0.30 0.15 0.11 1.00 (a) The probabty dstrbuto s gve the tabe above. E ( ) 14 0.1 0.3 30 0.30 40 0.15 65 0.11 30.15 E ( ) 14 0.1 0.3 30 0.30 40 0.15 65 0.11 117.3 Var() E( ) [ E( )] 18.1 14.77 Codtoa Probabty of 8 s gve the tabe beow Vaue of 14 30 40 65 0.0/0.39 0.03/0.39 0.15/0.39 0.10/0.39 0.09/0.39 E( 8) 14 (0.0/0.39) (0.03/0.39) 30 (0.15/0.39) E 40 (0.10/0.39) 65 (0.09/0.39) 39.1 ( 8) 14 (0.0/0.39) (0.03/0.39) 30 (0.15/0.39) 40 (0.10/0.39) 65 (0.09/0.39) 1778.7 Var( ) 1778.7 39.1 41.65 8 15.54 (c) E( ) (1 14 0.0) (1 : 0.05) (8 65 0.09) 171.7 Cov(, ) E( ) E( ) E( ) 171.7 5.33 30.15 11.0 Corr(, ) Cov(, )/( ) 11.0/(5.46 14.77) 0.136 10. Usg the fact that f N m, s the ~ N (0,1) ad Appedx Tabe 1, we have (a) 1 3 1 Pr( 3) Pr F (1) 0 8413 Pr( 0) 1 Pr( 0) 3 0 3 1 Pr 1 F( 1) F(1) 0 8413 3 3

8 Stock/Watso - Itroducto to Ecoometrcs - Bref Edto (c) (d) 40 50 50 5 50 Pr(40 5) Pr 5 5 5 F (0 4) F ( ) F (0 4) [1 F ()] 0 6554 1 0 977 0 636 11. (a) 0.90 0.05 (c) 0.05 (d) Whe (e) ~ 10, the 10,, 6 5 5 8 5 Pr(6 8) Pr F ( 113) F (0 7071) /10 ~ F. 0 9831 0 760 0 9 Z where Z ~ N(0,1), thus Pr( 1) Pr( 1 Z 1) 0.3. 1. (a) 0.05 0.950 (c) 0.953 (d) The t df dstrbuto ad N(0, 1) are approxmatey the same whe df s arge. (e) 0.10 (f) 0.01 13. (a) E E W W ( ) Var ( ) 1 0 1; ( ) Var ( ) W 100 0 100. ad W are symmetrc aroud 0, thus skewess s equa to 0; because ther mea s zero, ths meas that the thrd momet s zero. 4 E ( ) (c) The kurtoss of the orma s 3, so 3 ; sovg yeds yeds the resuts for W. (d) Frst, codto o 0, so that S W : E( S 0) 0; E( S 0) 100, E( S 0) 0, E( S 0) 3 100 Smary, $ 3 4. 3 4 E( S 1) 0; E( S 1) 1, E( S 1) 0, E( S 1) 3. From the arge of terated expectatos E( S) E( S 0) Pr( 0) E( S 1) Pr( 1) 0 4 E( ) 3; a smar cacuato E( S ) E( S 0) Pr( 0) E( S 1) Pr( 1) 100 0.01 1 0.99 1.99 3 3 3 E( S ) E( S 0) Pr( 0) E( S 1) Pr( 1) 0 4 4 4 E( S ) E( S 0) Pr( 0) E( S 1) Pr( 1) 3 100 0.01 3 1 0.99 30.97

Soutos to Exercses Chapter 9 (e) ( ) 0, S ES thus Smary, E S E S from part d. Thus skewess 0. 3 3 ( S ) ( ) 0 E( S ) E( S ) 1.99, ad E S E S Thus, S S kurtoss 30.97/(1.99 ) 76.5 4 4 ( S ) ( ) 30.97. 14. The cetra mt theorem suggests that whe the sampe sze () s arge, the dstrbuto of the sampe average ( ) s approxmatey N, wth. Gve 100, 43 0, (a) 100, 43 0 43, ad 100 100 101 100 Pr( 101) Pr F (1 55) 0 9364 0 43 0 43 165, 43 0 606, ad 165 100 98 100 Pr( 98) 1 Pr( 98) 1 Pr 0 606 0 606 1 F ( 3 9178) F (3 9178) 1 000 (rouded to four decma paces) (c) 64, 43 0 6719, ad 64 64 101 100 100 103 100 Pr(101 103) Pr 0 6719 0 6719 0 6719 F (3 6599) F (1 00) 0 9999 0 8888 0 1111 15. (a) Pr(9.6 10.4) Pr Pr where Z ~ N(0, 1). Thus, 9.6 10 10 10.4 10 4/ 4/ 4/ 9.6 10 10.4 10 Z 4/ 4/ () 0; 9.6 10 10.4 10 Pr Z Pr( 0.89 Z 0.89) 0.63 4/ 4/ () 100; 9.6 10 10.4 10 Pr Z Pr(.00 Z.00) 0.954 4/ 4/ () 1000; 9.6 10 10.4 10 Pr Z Pr( 6.3 Z 6.3) 1.000 4/ 4/

10 Stock/Watso - Itroducto to Ecoometrcs - Bref Edto As get arge Pr(10 c 10 c) Pr c 4/ c 10 c 4/ 4/ 4/ c c Pr Z. 4/ 4/ gets arge, ad the probabty coverges to 1. (c) Ths foows from ad the defto of covergece probabty gve Key Cocept.6. 16. There are severa ways to do ths. Here s oe way. Geerate draws of, 1,,. Let 1 f 3.6, otherwse set 0. Notce that s a Berou radom varabes wth Pr( 1) Pr( 3.6). Compute. Because coverges probabty to Pr( 1) Pr( 3.6), w be a accurate approxmato f s arge. 17. 0.4 ad 0.4 0.6 0.4 (a) () P( 0.43) () P( 0.37) 0.4 0.43 0.4 0.4 Pr Pr 0.614 0.7 0.4/ 0.4/ 0.4/ 0.4 0.37 0.4 0.4 Pr Pr 1. 0.11 0.4/ 0.4/ 0.4/ 0.41 0.4 We kow Pr( 1.96 Z 1.96) 0.95, thus we wat to satsfy 0.41 1.96 ad 0.39 0.4 0.4/ 1.96. Sovg these equates yeds 90. 18. Pr( $ 0) 0 95, Pr( $ 0000) 0 05. (a) The mea of s The varace of s 0 Pr( $ 0) 0,000 Pr( $ 0000) $ 1000. 0.4/ E 19. (a) (0 1000) so the stadard devato of s Pr 0 (0000 1000) Pr( 0000) 7 ( 1000) 0 95 19000 0 05 1 9 10, 1 7 $ 7 (1 9 10 ) 4359 1 9 10 5 () E( ) m $ 1000, 1 9 10. 100 () Usg the cetra mt theorem, Pr( 000) 1 Pr( 000) 1 Pr 1000 000 1 000 1 9 10 1 9 10 5 5 1 F ( 94) 1 0 9891 0 0109

Soutos to Exercses Chapter 11 Pr ( y ) Pr ( x, y ) j j 1 1 Pr ( y x )Pr ( x ) j E ( ) y Pr( y ) y Pr( y x )Pr( x ) j j j j j 1 j 1 1 1 1 k k k j 1 y Pr( y x ) Pr( x ) j j E( x )Pr( x ) (c) Whe ad are depedet, so Pr ( x, yj ) Pr ( x)pr ( y j ) s E[( m )( m )] k 1 j 1 k 1 j 1 ( x m )( y m )Pr( x, y ) j j ( x m )( y m )Pr( x )Pr( y ) j j ( x m )Pr( x ) ( y m )Pr( y j j 1 j 1 E( m ) E( m ) 0 0 0, 0 cor (, ) 0 k 0. (a) m Pr( y ) Pr( y x, Z z )Pr( x, Z z ) j h j h j 1 h 1 k E( ) y Pr ( y )Pr ( y ) 1 y Pr ( y x, Z z )Pr ( x, Z z ) j h j h 1 j 1 h 1 m k j 1 h 1 1 j 1 h 1 k m m y Pr ( y x, Z z ) Pr ( x, Z z ) j h j h E( x, Z z )Pr ( x, Z z ) j h j h where the frst e the defto of the mea, the secod uses (a), the thrd s a rearragemet, ad the fa e uses the defto of the codtoa expectato.

1 Stock/Watso - Itroducto to Ecoometrcs - Bref Edto 1. (a) E E E 3 3 3 ( ) [( ) ( )] [ ] E( ) 3 E( ) 3 E( ) E( ) 3 E( ) E( ) 3 E( )[ E( )] [ E( )] 3 3 3 3 E( ) 3 E( ) E( ) E( ) 3 3 E E 4 3 3 ( ) [( 3 3 )( )] E 4 3 3 3 3 4 [ 3 3 3 3 ] E( ) 4 E( ) E( ) 6 E( ) E( ) 4 E( ) E( ) E( ) 4 3 3 4 E( ) 4[ E( )][ E( )] 6[ E( )] [ E( )] 3[ E( )]. The mea ad varace of R are gve by w 4 3 4 0.08 (1 w) 0.05 w 0.07 (1 w) 0.04 w (1 w) [0.07 0.04 0.5] where 0.07 0.04 0.5 Cov ( Rs, R b) foows from the defto of the correato betwee R s ad R b. (a) 0.065; 0.044 0.075; 0.056 (c) w 1 maxmzes ; 0.07 for ths vaue of w. (d) The dervatve of d dw wth respect to w s w.07 (1 w) 0.04 ( 4 w) [0.07 0.04 0.5] 0.010w 0.0018 sovg for w yeds w 18 /10 0.18. (Notce that the secod dervatve s postve, so that ths s the goba mmum.) Wth w 0.18, R.038. 3. ad Z are two depedety dstrbuted stadard orma radom varabes, so Z 0, Z 1, Z 0. (a) Because of the depedece betwee ad Z, Pr( Z z x) Pr( Z z ), ad (c) E( Z ) E( Z ) 0. Thus E ad E( ) E( Z ) E( ) E( Z ) 0 ( ) 1, E( Z) E( ) Z 1 0 1 3 3 ( ) ( ) ( ) ( ). 3 E E Z E E Z Usg the fact that the odd momets of a stadard orma radom varabe are a zero, we have E ( ) 0. Usg the depedece betwee ad Z, we 3 have E( Z ) 0. Thus E( ) E( ) E( Z ) 0. Z

Soutos to Exercses Chapter 13 (d) Cov( ) E[( )( )] E[( 0)( 1)] E( ) E( ) E( ) 0 0 0 0 cor (, ) 0 4. (a) E ( ) ad the resut foows drecty. ( / ) s dstrbuted..d. N(0,1), W ( / ), 1 ad the resut foows from the defto of a radom varabe. (c) E(W) (d) Wrte E( W) E E. 1 1 V / s 1 1 ( / s ) 1 1 whch foows from dvdg the umerator ad deomator by. 1 / ~ N(0,1), 1, ad 1 / ad the t dstrbuto. ~ ( / ) are depedet. The resut the foows from the defto of ( / )