bkpl!"#$ `l O!" = = = = = ! == !"#$% ADVANCES IN CLIMATE CHANGE RESEARCH

Similar documents
3. Carbon Dioxide (CO 2 )

!"#$%&'()#*+,-./0123 = = = = = ====1970!"#$%& '()* 1980!"#$%&'()*+,-./01"2 !"#$% ADVANCES IN CLIMATE CHANGE RESEARCH

Two decades of ocean CO 2 sink and variability

Study of interannual variability in CO 2 fluxes using inverse modelling

Ocean carbon cycle feedbacks in the tropics from CMIP5 models

A re-evaluation of the coherence between global-average atmospheric CO 2 and temperatures at interannual time scales

1.6 Correlation maps CHAPTER 1. DATA ANALYSIS 47

Global Carbon Cycle - I

Historical Changes in Climate

June 1993 T. Nitta and J. Yoshimura 367. Trends and Interannual and Interdecadal Variations of. Global Land Surface Air Temperature

Inter- Annual Land Surface Variation NAGS 9329

Climate Change and Global Warming

Carbon Flux Data Assimilation

Patterns and impacts of ocean warming and heat uptake

FUTURE PROJECTIONS OF PRECIPITATION CHARACTERISTICS IN ASIA

Is the basin wide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global warming?

Climate Feedbacks from ERBE Data

Light rain events change over North America, Europe, and Asia for

Using mathematical inverse theory to estimate respiratory and photosynthetic fluxes in a heterogeneous conifer canopy

Figure I.1-1 Annual mean temperature anomalies 2016 Circles indicate temperature anomalies from the baseline averaged in 5 x 5 grid boxes.

The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

In the spring of 2016, the American Philosophical Society s

Climate Outlook for Pacific Islands for August 2015 January 2016

First global measurement of mid-tropospheric CO 2 from NOAA polar satellites : The tropical zone

Global Carbon Cycle - I

Climate Outlook for December 2015 May 2016

Impact of terrestrial biosphere carbon exchanges on the anomalous CO 2 increase in

Climate Outlook for Pacific Islands for May - October 2015

Observed relationships between the Southern Annular Mode and atmospheric carbon dioxide

Research on Climate of Typhoons Affecting China

2018 Science Olympiad: Badger Invitational Meteorology Exam. Team Name: Team Motto:

lecture 11 El Niño/Southern Oscillation (ENSO) Part II

Website Lecture 3 The Physical Environment Part 1

Forced and internal variability of tropical cyclone track density in the western North Pacific

SUPPLEMENTARY INFORMATION

Unprecedented strength of Hadley circulation in impacts on CO2 interhemispheric

Climate Variability and Change Past, Present and Future An Overview

Ocean Constraints on the Atmospheric Inverse Problem: The contribution of Forward and Inverse Models

Introduction to Climate ~ Part I ~

Investigate the influence of the Amazon rainfall on westerly wind anomalies and the 2002 Atlantic Nino using QuikScat, Altimeter and TRMM data

Climate Change: Global Warming Claims

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response

Global temperature record reaches one-third century

Destabilization of Carbon Dioxide Hydrates in the Ocean. Resherle Verna Department of Earth Science, University of Southern California

Chapter Introduction. Earth. Change. Chapter Wrap-Up

Prentice Hall EARTH SCIENCE

Trends of Tropospheric Ozone over China Based on Satellite Data ( )

Different impacts of Northern, Tropical and Southern volcanic eruptions on the tropical Pacific SST in the last millennium

Climate Modeling Research & Applications in Wales. John Houghton. C 3 W conference, Aberystwyth

Northern New England Climate: Past, Present, and Future. Basic Concepts

Presentation Overview. Southwestern Climate: Past, present and future. Global Energy Balance. What is climate?

ENSO amplitude changes in climate change commitment to atmospheric CO 2 doubling

Recent Climate History - The Instrumental Era.

Name: Climate Date: EI Niño Conditions

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 11 November 2013

Relationship between typhoon activity in the northwestern Pacific and the upper-ocean heat content on interdecadal time scale

Climate Outlook for Pacific Islands for July December 2017

Analysis on Climate Change of Guangzhou in Nearly 65 Years

Supplement of Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015

School Name Team # International Academy East Meteorology Test Graphs, Pictures, and Diagrams Diagram #1

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 25 February 2013

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1.

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 15 July 2013

Climate Outlook for Pacific Islands for December 2017 May 2018

Lecture 28: Observed Climate Variability and Change

Initialized decadal climate predictions focusing on the Pacific Gerald Meehl

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 30 October 2017

Response of Terrestrial Ecosystems to Recent Northern Hemispheric Drought

Research progress of snow cover and its influence on China climate

The Spring Predictability Barrier Phenomenon of ENSO Predictions Generated with the FGOALS-g Model

Name Date Class. growth rings of trees, fossilized pollen, and ocean. in the northern hemisphere.

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes

Prentice Hall EARTH SCIENCE

Atmospheric Carbon Dioxide Concentration and the Obseroed Airborne Fraction.

Green O Plant Biology SC/BIOL Proterozoic. Archean

The Forcing of the Pacific Decadal Oscillation

Regional Climate Variability in the Western U.S.: Observed vs. Anticipated

Seasonal Climate Outlook for South Asia (June to September) Issued in May 2014

Factors That Affect Climate

Global Warming is a Fact of Life

Strengthening seasonal marine CO 2 variations due to increasing atmospheric CO 2 - Supplementary material

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 9 November 2015

What is Climate? Climate Change Evidence & Causes. Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing?

Léo Siqueira Ph.D. Meteorology and Physical Oceanography

Climate Variability Natural and Anthropogenic

Effects of Large Volcanic Eruptions on Global Summer Climate and East Asian Monsoon Changes

Comparison of Global Mean Temperature Series

First-Order Draft Chapter 3 IPCC WG1 Fourth Assessment Report

The increase of snowfall in Northeast China after the mid 1980s

becoming more reliable in climate change

8B.3 THE RESPONSE OF THE EQUATORIAL PACIFIC OCEAN TO GLOBAL WARMING

Chapter 14: The Changing Climate

SUPPLEMENTARY INFORMATION

CLIMATE. SECTION 14.1 Defining Climate

Increased phytoplankton blooms detected by ocean color

Figure 65: Reservoir in a steady state condition where the input flux is equal to the output flux and the reservoir size remains constant.

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 24 September 2012

Transcription:

= = = = = 7 =!"#$% 5 ADVANCES IN CLIMATE CHANGE RESEARCH Vol. 7 No. May!"67-79 () -7-7 bkpl!"#$ `l O!"!==!"#$%&'()*+,-./ =ONMMQQ =! CO δ C!"#$%&'()*+ CO!"#$%&'( δ C!"# CO!"#$%&'()*+,'-./!" CO!"#$% ENSO!"#$%!"#$%&'()*+,-.La Nin a CO!"El Nin o!"#$co!"#$%!" ENSO! δ C!"#$%&'(CO!"#$%&'()*+,-./,!"#$%&'(!ENSO!" CO δ C!"!!"X6 ==!"#A = ==== 8!"!"#$%CO!"#$%&'&!()*+",-. 997!"#$ 9!"#$CO!"#$%&'()!"!"#$%&'( CO!"#$!"#$%&'(!"#$%&'()CO!"!8 ppm J6 885 ppm!"#6!"#$%&'!"!".76 xz!"#$%&'()!"#$%& '()*+,-./!"!"#$%&'()*+,-# CO!"#$%&'()*+,--(./!"#$%& xz!" L!!"#$%&'()!"#$%&'!"#$%&'()*+,-./!"#$%&'()*+ CO!"#$Scripps!"#SIO 5!"#$%&'()*+!CO!"7! δ C!"#$%&'()*+,-!"#$%&'( ====!"#$% CO!"#$%&'!"#$%&! xjsz!"#!"#!"#$%&'()* CO δ C xjsz x7z!o!"#! --8= -6-!!" #$%&'CCSF7-!"#$%&'()QD6F!"#$%&'()*+,-! 967!!"#$%&E-mail: czxchen@nuist.edu.cn Adv. Clim. Change Res.,, 7 (): 7J77 7

= = = = = www.climatechange.cn!"#$% 7 =SIO! CO Table Global atmospheric CO observation stations of Scripps Institution of Oceanography (SIO) /m 985 8 /ppm!"# /ppm Alert ALT 88N 6W 985.. Point Barrow PTB 79N 566W 97 8.5 6. La Jolla Pier LJO 9N 7W 969 7.7.7 Mauna Loa MLO 9N 555W 97 958 7.65 6. Cape Kumukahi KUM 9N 59W 979 7.95 7.8 Christmas Island CHR N 578W 97 7.66. Samoa SAM 5S 7W 98 6.5.57 Kermadec Islands KER 9S 779W 98 6.76.86 Baring Head BHE S 75E 85 977 6.95. South Pole SPO 8959S 8W 8 957 6.6. CO!"#$%&'()*+,-./ I=!"#$%&'()*+,/!"#$%&'( CO!"# xi8z CO!"#$%&!"#$%!"#$%&ENSO!"#$PDO x5i9jz!!"#$%&'()*+,#-. xz!"#$%&'()*+,-./#$' xz!sst xz!" xz!" x5z!"# CO!"# CO!"#$%&!"#$%! xi5i8z!"#$%&'()*!"# J!" J!"# CO xz!"#$%& CO δ C!"#$%&' CO!"#$%&'!"#$!"#$%&' CO δ C!"#$%& CO!"#!"#$%&'()!"CO δ C!"#$ CO!"!"#$!"#$%&'()*+,- CO! CDIAC, http://cdiac.ornl.gov/enso!"#$%&'()noaa! CPC, http://www.cpc.noaa.gov/ N== `l O!"#$%&' ====CO 8!"#$%&'()!"#$%&'()CO 8 ppm!"#!!!"#$%&'()*+,-./!!"#$%&'(")*+,"-./ 8!"#$%&.5 Gt C/a!"#!.5 Gt C/a!"#$ CO 6 Gt C!"#$%& 958!"!"#$%CO!"#$%&'(.5 ppm 97 97988 99 998 CO!"#$%&'!"#$%&'()!"# J J!" CO!"#$%! CO!"#$%&'()*!"#!"#$%&'()*+,-./!"#$%&'()*!"#$%&!"#$%&'()*+", x6z!"#" x7j8z!"#$%&co!"!"#$!"#$%&co!"#%!"#$%&'()*+!!"#$%&'()*+,- xz 7 Adv. Clim. Change Res.,, 7 (): 7J77

!ENSO!"#$ CO!" 7!" /Gt C 9 8 7 6 5 CO /ppm 9 7 5 9 CO /(ppm/a) 958 968 978 988 998 8! CO! δ C! MLO CO MLO δ C!"#$%!"#$% 7 J9. 6 85 87 89 9 9 95 97 99 J5.5 J6. J6.5 J7. J7.5 J8. J8.5 δ C/.6.. J. J. J.6!"# / CO δ C!"#$%&'()*+,-.!"#$%& MLO CO!"#$% Fig. The historical variations of atmospheric CO, δ C, global mean temperature and anthropogenic emissions (The curve in the inset denotes yearly growth rate of atmospheric CO observed at MLO) ====85!"CO δ C!"#!"#$%&δ CSuess δ C85 J6.5!"#$!" J8!"#!" CO!"#$%&'()!"#$%&'()!"#$%&'!"# CO δ C!"#$!"# ====!"#$ %&'()*!"# CO x9z CO!"#$%&'!"#$%&'()*+ xz!"#$%&'()*+, CO!"#$%&'!"#$%&$'!"# L!"#$% O== `l O!"#$%& ====! CO!"#$%&'()*!"#$%!"#$%!"985 8!" CO!"#$%!"#$%&!" Alert!"#$%!"#$%&'()!"#$%&'()*+,-./ CO!!"#$%& CO!"#$%&#'()*+,-!"!!"#$%&'()*+,-!"CO!"8!"#$%!"#SIO!"#$Zhou x5j6z!"#$%&'()*+, -./ CO!"#$%&'()*+,(!"#!"#$%&'()*+,-!"#$%& '!"#$%&'(! xiiz SST!"#$%&!"# CO!!"#$%&' xi7z ====!CO δ CJ7J9! CO δ C J8 xjz CO δ C!"#!"#$%&' δ C J5J8!"# CO δ C!!" CO!"#$%&'()*+,!"# CO δ C!"#$%!"#$ δ C!"#$% CO!"# CO!"#$%&'()!"#$%&'!"#$% CO!"#CO /5 xz!"#$%!"#$ CO!"#$%&' ====!"!"#$%&'( )*!"#$%&'()*+",$%- Adv. Clim. Change Res.,, 7 (): 7J77 7

= = = = = www.climatechange.cn!"#$% 7 CO /ppm CO /ppm 8 7 6 (a) PTB J7. J7. J7. J8. 5 J8. J8. J8.6 986 989 99 99 997 75 J7. (c) SAM 7 65 6 55 5 5 986 989 99 99 997 J8. J8. δ C/ δ C/ CO /ppm CO /ppm 8 J7. 75 (b) MLO 7 65 6 55 5 5 986 989 99 99 997 J8. J8. J8. 75 J7. (d) SPO 7 65 6 55 5 J8. 5 986 989 99 99 997 J8. SIO!"# CO! δ C!!"#$ Fig. The time series of atmospheric CO ( solid line) and δ C (dashed line) at selected SIO stations δ C/ δ C/!"#$%&'()*+ CO!"# x8iz!" CO δ C!"#$!"#$%&'!"#$%&!!"#$ CO!"#$%&!"#$%&'()*+,-./( P==! `l O!"#$ ==== CO!"#$%&'(&)*!"#$%&'()*!"#$%& xiiiz!"#$%&'! CO!"#$%&'(!")*+ Keeling xz!"#$%&'()*+!"co δ C!"#$%& 7!"#$!"#$%&58 Gt C CO!"!"#$%& CO!"#$%&'(!"#$%&'( CO δ C!"#$%&!" C A (i, j) = C (ij) J C (ijj); C A (i, j) = C (ij) J C (ijj) () C A C A = C C!" CO δ C!"#$%&'i!j! ==== P!"#$%& 975 9 CO C A C A!SIO MLO!"#$%&'(!"#$%&'( NOAA CO!!"#$% C A!"C A!! 986 987997 998 5 6!"#$%& Nino.!"# SSTA! C A SSTA!"#$%& C A El Nin o!"#$ La Nin a!! ENSO!"#$ CO! ENSO!"#$C A!"#$ ENSO C A!"# La Nin a!"# El Nin oenso!"#$%& C A!"#$!"# ENSO!"#!"#$%&SPO!"#$!"#$%&'998999!El Nin o!"#$%&'()*+,!- El Nin o!"# SST!"#$%&'(DIC!"#$!"#$%&'( DIC!"#$%&'!"#$%&'()! CO!!"#$%&'(!" #$% xz!"#$%&'( CO La Nin a!"sst 7 Adv. Clim. Change Res.,, 7 (): 7J77

!ENSO!"#$ CO!" 75 DIC!"#$%&'!"#$%&!"#$%&CO xiz!" ENSO!"# $%&'()*+!"#$%&'()*+!"#$!"CO!"!"# C A C A!"#$%&'(ENSO!"!"#$%&'()*+,-./ ENSO!"#$%&'()* CO xz!"#$%&'() CO!"! CO!"#$%&'()*+!", ==== 98 98 99 99 ENSO C A!"#$%&'()!"#!"#!"#$%&'()*+,- C A /ppm C A /ppm 7 6 (a) PTB 5 J J J 975 98 985 99 995 5 (b) MLO 975 98 985 99 995 5 5 (c) SAM J J J J J J SSTA/ SSTA/... J. J. J.... J. J. J.... C A / C A / C A /ppm J J SSTA/ J. J. C A / C A /ppm J 975 98 985 99 995 5 (d) SPO J 975 98 985 99 995 5 Nino. SSTA C A C A C A C A J J J SSTA/ J.... J. J. J. C A /! C A C A Nino. SSTA!"=E!"#$%&'()*+,-./F Fig. The time series of the annual increment of monthly CO and δ C at different latitudes with Nino. SSTA (Two thick shaded bars on the abscissa denote the volcano eruption periods of El Chichon and Pinatubo, respectively) Adv. Clim. Change Res.,, 7 (): 7J77 75

= = = = = www.climatechange.cn 76!"#$% 98! El Chichon 99 Pinatubo!!"#$%& C A!"#!"#ENSO!"#$% IPCC!" Pinatubo!"#! CO xz!"#$%co!"#!"!"#$%&' CO CO!CO!" CO!!"#$%&'()*!"CO!"#$%!"#$%&' xz!"#$%!"#$%&'()*+!"#$%&'()*+!"#$%!"#$%&'()*'(+,-./!"#$%&'()*'+,-. x5z!"#$co!"#$%&'(!"#$%&'()*+,-.+/!"#$%& xiz!"#$%!"#! CO!"#$%&' CO!"#$%&'()El Chichon!"# MLO!"# C A!" Pinatubo!"#$%&'$()*+,-!"#$%&'($)!"#$%& C A C A!"#$%&!"#$%&'!"MLOSAM!"#$El Chichon!"#!" PTB SPOC A C A!"#$ Pinatubo!"#$%&!"#$%&'()*+,-C A!"!" L!"#$%&!"#$!"#$ δ C!"#$%&! Pinatubo!"#$%&'()*!"#$%&' x5z!"#$%&!"#$%&'(c A!"#$!"#$%& L! SST!"!"#$%&'()*+ CO! x 7J8z!"#$%&'()*!"!"#$%&' ENSO!"#$%!"#$%CO δ C!"#$%!"! 99!"#$%!"#$%.5 Gt C/a x5z!"#$ δ C! Q==!" ==== CO!"#$ ENSO! La Nin a!"#$%&el Nin oco!"# δ C!"# CO!"#$%&'()*+,-./!"#$%&'() ENSO!"!"#$%&'CO!" x8ii8z!"#$%&'()*+,- x8z!"!"#$%&'()*+,-./!"#$% x8z ENSO!"!"#$%&'(!"#$%&'!"#$%&'()*+ x7z ====!"#$%& CO!"! ENSO!"#$%!"#$ CO δ C!"#$%&'!"#$%&'!"#$%&"'!"#$%&'(!"#$%&'(")*+,"-./! [] IPCC. Climate change 7: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge, UK: Cambridge University Press, 7 [],,,. IPCC!"#$%&'( δ C!"#$%=[J].!"#$%, 8, (6): 69J 75 [] Keeling C D, Bacastow R B, Carter A F, et al. A three-dimensional model of atmospheric CO transport based on observed wind,, analysis of observational data [M]//Peterson D. Aspects of climate variability in the Pacific and western Americas. Geophysical Monograph Ser.55. Washington, DC: American Geophysical Union, 989: 65J6 [] Siegenthaler U. El Nin o and atmospheric CO [J]. Nature, 99, 5: 95J96 [5] Zhou L, Conway T J, White J W C, et al. Long-term record of atmospheric CO and stable isotopic ratios at Waliguan observatory: background features and possible drivers, 99J [J]. Global Biogeochemical Cycle, 5, 9, GB [6] Zhou L, White J W C, Conway T J, et al. Long-term record of atmospheric CO and stable isotopic ratios at Waliguan observatory: seasonally averaged 99J source/sink signals, and a comparison of 998J record to the selected sites in the Northern Hemisphere [J]. Global Biogeochemical Cycle, 6,, GB 76 Adv. Clim. Change Res.,, 7 (): 7J77

!ENSO!"#$ CO!" 77 [7] Keeling R F, Shertz S R. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle [J]. Nature, 99, 58: 7J77 [8] Sabine C L, Feely R A, Millero F, et al. Decadal changes in Pacific carbon [J]. Journal of Geophysical Research, 8,, C7 [9] Rayner P J, Francey R J, Langenfelds R, et al. Reconstructing the recent carbon cycle from atmospheric CO, delta C- and O-/N- observations [J]. Tellus, 999, 5B: J [] Feely R A, Takahashi T, Wanninkhof R, et al. Decadal variability of the airjsea CO fluxes in the equatorial Pacific ocean [J]. Journal of Geophysical Research, 6,, C8S9 [] Feely R A, Wanninkhof R, Takahashi T, et al. Influence of El Nin o on the equatorial Pacific contribution of atmospheric CO accumulation [J]. Nature, 999, 98: 597J6 [] Yang X, Wang M X. Monsoon ecosystems control on atmospheric CO interannual variability: inferred from a significant positive correlation between year-to-year changes in land precipitation and atmospheric CO growth rate [J]. Geophysical Research Letters,, 7 (): 67J67 [] Sabine C L, Feely R A. The oceanic sink for carbon dioxide [M]// Reay D, Hewitt N, et al. Greenhouse gas sinks. Oxfordshire, UK: CABI Publishing, 7: J9 [] Braswell B H, Schimel D S, Linder E, et al. The response of global terrestrial ecosystems to interannual temperature variability [J]. Science, 997, 78: 87J87 [5],,,.,! CO!"#$ [J].!"#$%"!&, 5, (): 9JPVV [6] Chen Z, Babiker I S, Chen Z X, et al. Estimation of interannual variation in productivity of global vegetation using NDVI data [J]. International Journal of Remote Sensing,, 5: 9J59 [7] Le Quere C, Orr J, Monfray P, et al. Interannual variability of the oceanic sink of CO : from 979 through 997 [J]. Global Biogeochemical Cycle,, (): 7J65 [8] Peylin P, Bousquet P, Le Quere C, et al. Multiple constraints on regional CO flux variations over land and oceans [J]. Global Biogeochemical Cycle, 5, 9, GB [9] Novak G. Global warming not caused by CO [R/OL]. 5 [-- 5]. http://nov55.com/gbwg.html [] Woodwell G M, Wittaker R, Reiners W A, et al. The biota and the world carbon budget [J]. Science, 978, 99: J6 [] Peylin P, Ciais P, Denning A, et al. A -dimensional study of δ 8 O in atmospheric CO : contribution of different land ecosystems [J]. Tellus, 999, 5B: 6J667 [] Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems [J]. Science, 99, 6: 85J9 [] IPCC. Climate change : the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge, UK: Cambridge University Press, [] McPhaden M J, Zebiak S E, Glantz M H. ENSO as an integrating concept in earth science [J]. Science, 6, : 7J75 [5] Krakauer N Y, Randerson J T. Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings [J]. Global Biogeochemical Cycle,, 7 (): 8 ENSO, Volcanic Activities and Interannual Variations of Atmospheric CO Chen Zhongxiao, Cheng Jun (Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, China) Abstract: Based on the observations of atmospheric CO and its δ C, the characters of seasonal and interannual variations of atmospheric CO were analyzed in different regions. The trends of atmospheric δ C were used to distinguish whether the dominative influential factor for the variations of atmospheric CO is from the terrestrial or the ocean. The results show that the interannual variations of atmospheric CO are mainly influenced by ENSOrelated change of terrestrial vegetation primary production, not by oceanic sink. And the intensity of La Nin a has more effect on atmospheric CO than that of El Nin o. The atmospheric CO increase would decrease after volcano events, which even conceal ENSO effects. The synchronized decrease in atmospheric δ C increase after volcano eruptions indicates that it is likely due to the increase of oceanic uptake or the weakening of terrestrial respiration resulted from persistent decrease of surface temperature. Key words: ENSO; volcanic activity; atmospheric CO ; δ C; seasonal variation; interannual variation Adv. Clim. Change Res.,, 7 (): 7J77 77