Critical Behavior I: Phenomenology, Universality & Scaling

Similar documents
Critical Behavior II: Renormalization Group Theory

Phase transitions and critical phenomena

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Introduction to Phase Transitions in Statistical Physics and Field Theory

Physics 212: Statistical mechanics II Lecture XI

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

Magnetism at finite temperature: molecular field, phase transitions

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems

The Ising model Summary of L12

PHASE TRANSITIONS AND CRITICAL PHENOMENA

Ginzburg-Landau Theory of Phase Transitions

f(t,h) = t 2 g f (h/t ), (3.2)

Collective Effects. Equilibrium and Nonequilibrium Physics

3. General properties of phase transitions and the Landau theory

Ernst Ising. Student of Wilhelm Lenz in Hamburg. PhD Thesis work on linear chains of coupled magnetic moments. This is known as the Ising model.

Thermodynamics of phase transitions

Three Lectures on Soft Modes and Scale Invariance in Metals. Quantum Ferromagnets as an Example of Universal Low-Energy Physics

Collective Effects. Equilibrium and Nonequilibrium Physics

Universal scaling behavior of directed percolation and the pair contact process in an external field

Phase Transitions and the Renormalization Group

Statistical Mechanics

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter

III. The Scaling Hypothesis

Phase Transitions. µ a (P c (T ), T ) µ b (P c (T ), T ), (3) µ a (P, T c (P )) µ b (P, T c (P )). (4)

arxiv: v1 [cond-mat.dis-nn] 31 Jan 2013

Overview of phase transition and critical phenomena

Interface Profiles in Field Theory

Renormalization Group for the Two-Dimensional Ising Model

Phase transitions and finite-size scaling

Statistical physics. Emmanuel Trizac LPTMS / University Paris-Sud

Microcanonical scaling in small systems arxiv:cond-mat/ v1 [cond-mat.stat-mech] 3 Jun 2004

0.1. CORRELATION LENGTH

II.D Scattering and Fluctuations

Chapter 6. Phase transitions. 6.1 Concept of phase

TRANSIZIONI DI FASE QUANTISTICHE. Ettore Vicari

S i J <ij> h mf = h + Jzm (4) and m, the magnetisation per spin, is just the mean value of any given spin. S i = S k k (5) N.

PH4211 Statistical Mechanics Brian Cowan

3 Phase transitions. 3.1 Introduction. 3.2 Thermodynamics of phase transitions

Magnetic ordering of local moments

Phase Transitions and Critical Behavior:

7 Landau Field Theory

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010)

The Mermin-Wagner Theorem

Linear excitations and domain walls

CE 530 Molecular Simulation

Lectures 16: Phase Transitions

1 Phase Transitions. 1.1 Introductory Phenomenology

Ginzburg-Landau Phenomenology

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

the renormalization group (RG) idea


Quantum phase transitions

SHANGHAI JIAO TONG UNIVERSITY LECTURE

Physics 127b: Statistical Mechanics. Second Order Phase Transitions. The Ising Ferromagnet

Statistical Physics. Solutions Sheet 11.

Wetting Transitions at Fluid Interfaces and Related Topics

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

The glass transition as a spin glass problem

Phenomenological Theories of Nucleation

Mott metal-insulator transition on compressible lattices

Linear Theory of Evolution to an Unstable State

s i s j µ B H Figure 3.12: A possible spin conguration for an Ising model on a square lattice (in two dimensions).

8 Error analysis: jackknife & bootstrap

Ginzburg-Landau Theory of Type II Superconductors

Lecture Notes, Field Theory in Condensed Matter Physics: Quantum Criticality and the Renormalization Group

most easily accessible to experiments and to computer simulations PACS numbers: e, Fh, h

Collective behavior, from particles to fields

Clusters and Percolation

The (magnetic) Helmholtz free energy has proper variables T and B. In differential form. and the entropy and magnetisation are thus given by

Landau Theory of Fermi Liquids : Equilibrium Properties

Introduction to Renormalization

An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns

FIG. 1. Phase Diagram of Water. 1

I. Collective Behavior, From Particles to Fields

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Crossover scaling in two dimensions

Non-equilibrium phase transitions

theory, which can be quite useful in more complex systems.

Ginzburg-Landau length scales

Phase Transitions in Relaxor Ferroelectrics

The square lattice Ising model on the rectangle

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Ginzburg-Landau theory of supercondutivity

The Superfluid Phase s of Helium 3

Thermodynamics, Part 2

A THREE-COMPONENT MOLECULAR MODEL WITH BONDING THREE-BODY INTERACTIONS

An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

ELECTRONICS DEVICES AND MATERIALS

The Ginzburg-Landau Theory

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 19 Oct 2000

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group

NPTEL

Universal scaling behavior of directed percolation around the upper critical dimension

(1) Consider a lattice of noninteracting spin dimers, where the dimer Hamiltonian is

Physics 7240: Advanced Statistical Mechanics Lecture 1: Introduction and Overview

Physics Nov Phase Transitions

Quantum phase transitions and disorder: Griffiths singularities, infinite randomness, and smearing

Transcription:

Critical Behavior I: Phenomenology, Universality & Scaling H. W. Diehl Fachbereich Physik, Universität Duisburg-Essen, Campus Essen 1

Goals recall basic facts about (static equilibrium) critical behavior consider examples discuss qualitative and quantitative universality universality in mean-field / Landau theory the role of fluctuations the phenomenological theory of scaling set the stage for RG theory (lecture II)

Assumptions some background in thermodynamics and equilibrium statistical physics some familiarity with phase transitions mean field theory concept of order parameter etc (previous lectures) 3

Phase Diagram (e.g. CO ) pressure P solid liquid critical point 0 0 triple point gas temperature [K] 4

Phase Diagram (e.g. CO ) melting pressure P solid freezing liquid critical point 0 0 triple point gas temperature [K] 4

Phase Diagram (e.g. CO ) melting pressure P 0 0 solid triple point freezing liquid vaporization condensation gas critical point temperature [K] 4

Phase Diagram (e.g. CO ) melting pressure P 0 0 solid liquid vaporization triple condensation point deposition sublimation freezing gas critical point temperature [K] 4

Phase diagram: PV space s + l liquid l + g solid gas s + g 5

D Fields & Densities conventional distinction: extensive: Q = V,(internal) energy E, S, M, intensive: q =, p, µ, H,, s = S / N, e = E / N, m = M / N, Q N, q N 0 more appropriate (Griffiths & Wheeler): D fields : ζ =, p, µ, H, same ( α ) ( β ) values ζ = ζ at α- β coexistence D densities : ρ = ρ, υ = V / N, s, e, m, i ( α ) ( β ) normally different values ρi ρi at α- β coexistence, p α β coex 7

Comparison: Fluid-Magnet p or µ fluid ferromagnet H ρ m m ( ) 0 length of tie lines OP: φ = β φ τ ; β 0.3 ( 3D) c τ = ( ) / c c φ = ( ρ ρ ) / φ = m0( ) l g = m(, H= 0 + ) 9

Comparison: Fluid-Magnet p or µ fluid ferromagnet H ρ m m ( ) 0 length of tie lines OP: φ = β φ τ ; β 0.3 ( 3D) c τ = ( ) / c c φ = ( ρ ρ ) / φ = m0( ) l g = m(, H= 0 + ) 9

Comparison: Fluid-Magnet p or µ fluid ferromagnet H critical behavior ρ m m ( ) 0 length of tie lines OP: φ = β φ τ ; β 0.3 ( 3D) c τ = ( ) / c c φ = ( ρ ρ ) / φ = m0( ) l g = m(, H= 0 + ) 9

Static Bulk Critical Behavior order parameter φ φ susceptibility χ compressibility κ Τ φ τ β χ τ C γ sing sing V, CH = ; β 0.330 (3D I) 0.366 (3D H) ; γ 1.4 (3D I) τ 1.39 (3D H) α 0 ; α 0.11 0.1 OP vanishes continuously as τ anomalies! correlation length ξ diverges! 0 10

Static Bulk Critical Behavior order parameter φ φ susceptibility χ compressibility κ Τ φ τ β χ τ C γ sing sing V, CH = ; β 0.330 (3D I) 0.366 (3D H) ; γ 1.4 (3D I) τ 1.39 (3D H) α 0 ; α 0.11 0.1 qualitative and quantitative universality! 11

D Ising Model: =1.4 c ξ 1

D Ising Model: = c ξ 13

D Ising Model: =0.8 c 14

Pair Correlation Function G( x, ) φ( x + x ) φ( x ) φ( x + x ) φ( x ) 0 0 0 0 0 0 cum φ( x + x ) φ( x ) ("cumulant") Power x exp( x / ξ ) for c ; ( d + η ) x for = c ; Fourier transform: G( ɶ q, ) c q ( η ) 15

Definition of Critical Exponents (i) C, V H τ κ, χ τ C ξ τ α γ ν = c (ii) p (i) (ii) δ p δυ H m (iii) C τ δ α δ (iii) V = c κ, χ φ τ τ γ β V=V c (iv) Gɶ ( q, ) c = φ φ q q q ( η ) f x x ln f ( x) λ ( ), if lim x 0+ ln x = λ 16

Qualitative Universality analogous theory for phase transitions and critical behavior in distinct systems, must identify: order parameter conjugate field thermodynamic paths 17

Fluid-Magnet Analogy p or µ fluid ferromagnet H ρ? µ H ρ m m m ( ) 0 c corresponding paths: asymptotically parallel to coexistence curve 18

Fluid-Magnet Analogy p or µ fluid ferromagnet H H = 0, ρ? µ H ρ m m m ( ) 0 + 0 c c corresponding paths: asymptotically parallel to coexistence curve 18

Fluid-Magnet Analogy p or µ fluid g = aδµ + bτ = h + 0 c 0 ferromagnet H H = 0, ρ? µ H ρ m m m ( ) 0 + 0 c c corresponding paths: asymptotically parallel to coexistence curve 18

Binary Mixed Fluids α (gas) 1phase βγ βγ homogen. mixture c β phase β + γ 0 1 composition x γ α : gas β : A-poor γ : A-rich γ β OP: composition φ = ( xa xa ) / examples: aniline & cyclohexan, CCl 4 & perfluoroheptane 19

Fe 3 Al: Phase Diagram OP = sublattice occupation n or n A Fe n B Fe Fe n Al 0

Fe 3 Al: Phase Diagram Al/Fe A phase OP = sublattice occupation n or n A Fe n B Fe Fe n Al 0

Fe 3 Al: Phase Diagram Al/Fe Al/Fe Fe B phase A phase OP = sublattice occupation n or n A Fe n B Fe Fe n Al 0

Fe 3 Al: Phase Diagram Al/Fe Al/Fe Fe B phase A phase Fe Al Fe OP = sublattice occupation n or n A Fe n B Fe Fe n Al DO 3 phase 0

Phase Diagram 4 He solid 4 He pressure [atm] superfluid 4 He l line normalfluid 4 He liquid-gas critical point = 5.0 K, p =.64 atm temperature [K]

Phase Diagram 4 He solid 4 He upper critical endpoint = 1.76 K, P = 9.8 atm pressure [atm] superfluid 4 He l line normalfluid 4 He liquid-gas critical point = 5.0 K, p =.64 atm temperature [K]

Phase Diagram 4 He solid 4 He upper critical endpoint = 1.76 K, P = 9.8 atm pressure [atm] superfluid 4 He l line normalfluid 4 He liquid-gas critical point = 5.0 K, p =.64 atm temperature [K] lower critical endpoint =.17 K, p = 0.0497 atm

Specific Heat at λ ransition M.J. Buckingham and W.M. Fairbank (1961); taken from H. E. Stanley, Introduction to Phase ransitions and Critical Phenomena (Oxford UP, Oxford 1971), p. 0 3

C p of 4 He at λ ransition exp. result: J.A. Lipa et al, cond-mat/0310163 α = 0.017 ± 0.0003 http://spaceresearch.hamptonu.edu/lpe/lpe.html 4

Quantitative Universality critical behavior ( universal quantities ) = quantitatively the same for whole classes of microscopically distinct systems nonuniversal quantities: c, amplitudes ( metric factors ) 5

Law of Corresponding States c E. A. Guggenheim, J. Chem. Phys. 13, 53 (1945) r / ρ ρ c 6

Universal Quantities a) critical exponents: α, β, γ, δ,, ν, η, b) certain ratios of nonuniversal amplitudes : ξ (0) (0) + C ξ χ C [ m ] (0) (0) (0) + + c) scaling functions: C (0) (0) + ξ D h τ f m B τ β χ χ (0) (0) + [ C ] (0) (0) 1/ d + + ξ ξ χ χ C h C = 0 m m equation of state (0) ± (0) ± (0) ± (0) τ τ τ τ ν γ α β ( ξ ) cum ( d + η ) 1 φ x1 φ x = const 1 Ξ 1 G( x ) ( ) ( ) x x will see: only independent critical exponents: α + β + γ =, α = dν (hyperscaling),... 7

Static Bulk Universality Classes bulk critical behavior depends on: d = space dimensionality of system n = # OP components gross features of the interaction: short-ranged / long-ranged / dipolar StBUC: D Ising model (n = 1) with short-range interactions 3D Heisenberg model (n = 3) with short-range interactions 3D uniaxial dipolar ferromagnet 8

Order Parameters symmetry system order parameter φ conjugate field physical example -- liquid-gas δρ δµ CO,, many Z /Ising uniaxial FM unaxial AFM disorder-order displacive m z A mz n u z A m n B B z h z A hz f z h B z A B µ µ Rb NiF 4, K MnF 4 β-brass, FeCo O(), U(1) easy-plane FM easy-plane AFM superfluid m = ( mx, my ) h = ( h x, h y ) A B A B m m h h ψ h ψ 4 He O(3) O(0) Heisenberg FM Heisenberg AFM SAW m m = ( mx, my, mz ) B m A h h A h B EuS, EuO, Fe, Ni RbMnF 3 polymer superconductors, liquid crystals, 3 He,. 9

classical lattice n-vector model K ij K = J k B periodic boundary conditions E 1 = = s s h s Hlat Kij i j i i kb i j i s i =1 30

effective field: H. W. Diehl (Essen): Critical Behavior I: Phenomenology, Universality & Scaling variational principle: MF theory h h K m = + eff i i ij j j i m i6 m i5 F e = Z = r e = Z e Z e m i1 m i4 ( H H ) H ( H H ) tr tr tr m i m i3 H H tr tr tr tr tr F F + H H tr tr tr 31

effective field: H. W. Diehl (Essen): Critical Behavior I: Phenomenology, Universality & Scaling variational principle: MF theory h h K m = + eff i i ij j j i m i6 m i5 F e = Z = r e = Z e Z e m i1 m i4 ( H H ) H ( H H ) tr tr tr m i m i3 H H tr tr tr tr tr F F + H H tr tr tr choose optimal eff H = tr hi si i 31

effective field: H. W. Diehl (Essen): Critical Behavior I: Phenomenology, Universality & Scaling variational principle: MF theory h h K m = + eff i i ij j j i m i6 m i5 F e = Z = r e = Z e Z e m i1 m i4 ( H H ) H ( H H ) tr tr tr m i m i3 H H tr tr tr tr tr F F + H H tr tr tr choose optimal eff H = tr hi si i result (Ising case): m = tanh + i Kijm j hi j h eff i 31

graphical solution (MF theory) ( ) B ij m = tanh Km ; K J / k h = 0 j x / K = tanh( x) K( c ) = 1 1 > c -0.5 0.5 0 < c x = Km 0 0-1 -3 - -1 0 1 3 x = Km 3

graphical solution (MF theory) ( h) B ij j m = tanh Km + ; K J / k ( x h) / K = tanh( x) K( c ) = 1 h 0 1 > c 0.5 0 < c -0.5-1 -3 - -1 0 1 3 x = Km + h 33

MF Equation of State h = 0.77 c = 1.43 c = c h 1 1+ m = Km + ln 1 m m = ( ) + + 3 3 4 1 K m O( m ) m 0 () m 0 () m 35

MF Equation of State h = 0.77 c = 1.43 c = c h 1 1+ m = Km + ln 1 m m = ( ) + + 3 3 4 1 K m O( m ) δ MF = 3 m 0 () m 0 () m 35

MF Equation of State h = 0.77 c = 1.43 c = c β = MF 1 h 1 1+ m = Km + ln 1 m m = ( ) + + 3 3 4 1 K m O( m ) δ MF = 3 m 0 () m 0 () m 35

= c H. W. Diehl (Essen): Critical Behavior I: Phenomenology, Universality & Scaling Helmholtz Free Energy A(, m) / V = [ A(, m) A(,0)]/ V > c < c m 0 m 0 m A(, m ) 1 1 1 1 4 6 = K m + ln ( 1 m ) + m ln + m = ( 1 K ) m + m + O( m ) V 1 m 1 36

Ornstein-Zernike approximation for correlation function m = tanh i Kilml + hi l ( 1 ) h j Gij = mi KilGlj + δij l ( 1 )( ɶ ɶ 1 ) Gɶ = m K G + q q q 1 1 Gɶ = ɶ q K + + + q m K q O q 1 m ( ) ( 4 τ ) 0 1 ɶ 1/ K Gq = q + ξ ± 1 ɶ MF G q > 1 MF c 1 > c ν η = 1 = 0 ξ K 1/ τ >, τ, ± 1/ < c c ( ξ (0) q ) + ξ (0) (0) + ξ = 37

Specific Heat etc FN 1 / = ln cosh ( + ) Km h Km ch= 0 0; > = 3 kb ; < c ɶ c c h = 0 φ exp C h=0 MF C h=0 MF 1 κ α β γ α β γ MF MF MF 3D-Ising 3D-Ising 3D-Ising = 0 = 1/ = 1 = 0.11(0) = 0.3(7) = 1.3(9) MF MF c MF c 38

Specific Heat etc FN 1 / = ln cosh ( + ) Km h Km ch= 0 0; > = 3 kb ; < c ɶ c c h = 0 φ exp C h=0 MF C h=0 MF 1 κ α β γ α β γ MF MF MF 3D-Ising 3D-Ising 3D-Ising = 0 = 1/ = 1 = 0.11(0) = 0.3(7) = 1.3(9) MF c MF c MF α β γ D-Ising D-Ising D-Ising = 1/ 8 = 7 / 4 sing C h = 0 = 0; lnτ 38

Landau heory (Magnets) assumptions: a) expandability b) analyticity 1 1 4 A (, φ ) / V = A0 ( ) + A ( ) φ + A4 ( ) φ + 4 A ( ) = A + A + O τ ( τ ),0,1 = 0 A ( ) = A + O 4 4,0 ( τ ) > 0 O(n) invariant (n = 1) h A χ ( ) 3 φ φ 1 = = = A + A4,0 φ 39

Defects of MF / Landau heory wrong values of critical exponents for d = 3 and d = wrong universal amplitudes, equations of state etc critical expo s are independent of d and n hyperscaling broken for d < 4 α MF = dν ( MF ) transitions at c > 0 K for 1, Ising; d d* = lcd =, O( n) symmetry ( qualitatively wrong! ) Why? 40

Defects of MF / Landau heory wrong values of critical exponents for d = 3 and d = wrong universal amplitudes, equations of state etc critical expo s are independent of d and n hyperscaling broken for d < 4 α MF = dν ( MF ) transitions at c > 0 K for 1, Ising; d d* = lcd =, O( n) symmetry ( qualitatively wrong! ) Why? MF theory neglects fluctuations! 40

Ginzburg Criterion correlation volume V ξ x x 0 δφ( x) = φ( x) φ( x) fluctuations negligible if: V ξ d d x ξ δφ( x ) δφ( x + x) V φ 0 0 ξ 41

Ginzburg Criterion correlation volume V ξ x x 0 δφ( x) = φ( x) φ( x) fluctuations negligible if: ξ δφ( ) δφ VV ξ ξφ φ d x Ξ( x / ) Ad ξ ( B β ξ τ ) d d x δφ( x 0 ) δφ( x 0 + x ) V ξ ( d + η) 41

Ginzburg Criterion correlation volume V ξ x x 0 δφ( x) = φ( x) φ( x) fluctuations negligible if: ξ = ξ τ (0) ν 1 MF MF ; MF ν = β = η = 0 ξ δφ( ) δφ VV ξ ξφ φ d x Ξ( x / ) Ad ξ ( B β ξ τ ) d d x δφ( x 0 ) δφ( x 0 + x ) V ξ ( d + η) S d d 1 η 1 η d β dr r Ξ( r) Sd B 0 ξ ξ τ τ ( ξ ) (4 d )/ (0) N d d C 41

Ginzburg Criterion correlation volume V ξ x x 0 δφ( x) = φ( x) φ( x) fluctuations negligible if: ξ = ξ τ (0) ν 1 MF MF ; MF ν = β = η = 0 ξ δφ( ) δφ VV ξ ξφ φ d x Ξ( x / ) Ad ξ ( B β ξ τ ) d d x δφ( x 0 ) δφ( x 0 + x ) V ξ ( d + η) S d d 1 η 1 η d β dr r Ξ( r) Sd B 0 ξ ξ τ τ ( ξ ) (4 d )/ (0) N d d C * ( (0) ) d d < d 4 : not satisfied for τ< τ Gi = N ɶ d ξ C /(4 d ) 41

Lower Critical Dimension I: Ising case Ising chain, = 0: D stable for > 0? low-energy excitations: kinks! F = E S E = J S = ln L ln L F J L L < > 0 const ln 0 if 0 ordered state D unstable for > 0 d * = 1 4

Lower Critical Dimension II: O(n) case U ( φ ) A τ A = φ +,1 4,0 φ 4 L E L L φ ( x) cos( q x) φ q q φq E q k B 43

Lower Critical Dimension II: O(n) case U ( φ ) A τ A = φ +,1 4,0 φ 4 L E L L φ ( x) cos( q x) φ q q φq E q k B φ ( x) 1 k d d q B q Λ q = for d 43

Lower Critical Dimension II: O(n) case U ( φ ) A τ A = φ +,1 4,0 φ 4 L E L L φ ( x) cos( q x) φ q q φq E q k B φ ( x) 1 k d d q B q Λ q = for d no long-range order for d (Mermin-Wagner theorem) d * = 43

owards Phenomenological Scaling ( ),1 τ 4,0 h = m A + A m ( 1/ ),1τ 4, 0 h = m A + A m β m0 β τ 44

owards Phenomenological Scaling ( ),1 τ 4,0 h = m A + A m ( 1/ ),1τ 4, 0 h = m A + A m β ( γ 1/ β ),1τ 4,0 h = m A + A m m0 β τ nonanalytic behavior for τ = 0 if m 0, h 0 44

owards Phenomenological Scaling ( ),1 τ 4,0 h = m A + A m ( 1/ ),1τ 4, 0 h = m A + A m β ( γ 1/ β ),1τ 4,0 h = m A + A m m0 β τ nonanalytic behavior for τ = 0 if m 0, h 0 no! 44

owards Phenomenological Scaling ( ),1 τ 4,0 h = m A + A m ( 1/ ),1τ 4, 0 h = m A + A m β ( γ 1/ β ),1τ 4,0 h = m A + A m m0 β τ nonanalytic behavior for τ = 0 if m 0, h 0 no! B. Widom D h m m = ± 1 β + β τ B τ B τ 1/ β MF 3 = 44

Matching condition ( D h ) m( τ, h) B τ M τ β ± β = δ M± ( y) const 1/ y δ M ( y) m analytic for h 0! M+ ( y) y 45

Scaling Plot data must collapse on branches of a curve m < c = c m τ β M ( y) M+ ( y) > c h h τ 46

Scaling Ansatz for Gibbs Free Energy F k V B F (, h) V reg = = f + f sing matching conditions! f sing α (, ) ( τ h A Y ) τ τ ± Ah h τ 47

Scaling Ansatz for Gibbs Free Energy F k V B F (, h) V reg = = f + f sing matching conditions! α (, ) ( ) τ h Aτ τ Y± Ah h τ sing f g g g g magnet τ τ gτ = τ + c,0τ + c1, τ h + g c hτ c τ h h h h 3 = h + 1,1 + 1,3 + nonlinear scaling fields fluid ( δµ ) ( ) τ τ τ τ τ τ + c0,1 δµ 1,1 τ δµ,0 τ 1, τ δµ g = + c + c + c + g = δµ + c τ + c τ δµ + c + h h h h 1, 0 1,1 0, 48

Consequences f sing α (, ) ( τ h A Y ) τ τ ± Ah h τ 1) two independent D critical exponents: 0 h= 0 α m = f h τ Y ( 0) β = α α χ = f h τ Y h= 0 ± ( 0) γ = α + ) hyperscaling: f single relevant length if h = 0 f d ( τ,0) ξ τ d ν α = dν 3) two-scale-factor universality: ( ) A, A h = nonuniversal metric factors just! τ 49