Similar documents
[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2

Some lecture notes for Math 6050E: PDEs, Fall 2016

1 r. Published on 28 January Abstract. will be discussed period Recently frequency jumps

Laplace s Equation. Chapter Mean Value Formulas

Estimating Information Cost Functions in Models of Rational Inattention

I. Relationship with previous work

A geometric solution of the Kervaire Invariant One problem

Robust Inference. Bruce E. Hansen University of Wisconsin. This draft: September 2014 Preliminary. Do not cite. Abstract


Carleson measures and elliptic boundary value problems Abstract. Mathematics Subject Classification (2010). Keywords. 1.

Cosmology. April 13, 2015

Matrix Differentiation

Strong Markov property of determinatal processes

Sobolev embeddings and interpolations

Hyperbolic Geometric Flow

MATH45061: SOLUTION SHEET 1 V

Gaussian Elimination for Linear Systems

Math 715 Homework 1 Solutions

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

X-MA2C01-1: Partial Worked Solutions

Confidence regions for stochastic variational inequalities

e sinϑ dθ dt θ ˆ,!!!!!!!!!!!!(10.1)! dt! ˆk + x dt dt dt ˆk = ( u r , v r , w r )!!!!!!!!!!!!(10.5)!

sin(α + θ) = sin α cos θ + cos α sin θ cos(α + θ) = cos α cos θ sin α sin θ

and in each case give the range of values of x for which the expansion is valid.

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

XMA2C011, Annual Examination 2012: Worked Solutions

The Calderon-Vaillancourt Theorem

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

Partial Differentiation

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH

Dynamical Domain Wall and Localization

REVIEW OF MAIN CONCEPTS AND FORMULAS A B = Ā B. Pr(A B C) = Pr(A) Pr(A B C) =Pr(A) Pr(B A) Pr(C A B)

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½

The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models


Sobolev Spaces. Chapter 10

2.20 Fall 2018 Math Review

CONVEXIFICATION OF COEFFICIENT INVERSE PROBLEMS

Homework #6 : final examination Due on March 22nd : individual work

Alexander Invariant of Tangles

K e sub x e sub n s i sub o o f K.. w ich i sub s.. u ra to the power of m i sub fi ed.. a sub t to the power of a

Regularity of flat level sets in phase transitions

PHASE TRANSITIONS: REGULARITY OF FLAT LEVEL SETS

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

. Then Φ is a diffeomorphism from (0, ) onto (0, 1)

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations

Formalism of the Tersoff potential

j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D

A2 Assignment lambda Cover Sheet. Ready. Done BP. Question. Aa C4 Integration 1 1. C4 Integration 3

where r n = dn+1 x(t)

Week 7: Integration: Special Coordinates

EN221 - Fall HW # 1 Solutions

Cold atoms in the presence of disorder and interactions

We denote the derivative at x by DF (x) = L. With respect to the standard bases of R n and R m, DF (x) is simply the matrix of partial derivatives,

arxiv: v1 [math.ca] 15 Dec 2016

Lower Tail Probabilities and Normal Comparison Inequalities. In Memory of Wenbo V. Li s Contributions

Nonparametric estimation using wavelet methods. Dominique Picard. Laboratoire Probabilités et Modèles Aléatoires Université Paris VII

Math 4263 Homework Set 1

MATH642. COMPLEMENTS TO INTRODUCTION TO DYNAMICAL SYSTEMS BY M. BRIN AND G. STUCK

ON SOME TWO-STEP DENSITY ESTIMATION METHOD

Hyperbolic volumes and zeta values An introduction

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

CUSUM TEST FOR PARAMETER CHANGE IN TIME SERIES MODELS. Sangyeol Lee

Hyperbolic Geometric Flow

A Probability Review

Change of Measure formula and the Hellinger Distance of two Lévy Processes

arxiv: v1 [math.gm] 2 Jun 2018

Infinitely Imbalanced Logistic Regression

I. Introduction. A New Method for Inverting Integrals Attenuated Radon Transform (SPECT) D to N map for Moving Boundary Value Problems

Fundamental Constants

DIFFERENCE METHODS FOR FUZZY PARTIAL DIFFERENTIAL EQUATIONS

Holonomic Gradient Method for Multivariate Normal Distribution Theory. Akimichi Takemura, Univ. of Tokyo August 2, 2013

Stat 5101 Notes: Algorithms


Necklace Flower Constellations

Section 4: The Quantum Scalar Field

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

The Mysterious World of Normal Numbers

A Short Course in Basic Statistics

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios


Higher dimensional Kerr-Schild spacetimes 1

The Quadrupole Moment of Rotating Fluid Balls

Local Asymptotic Normality in Quantum Statistics

Assumptions for the theoretical properties of the

Sobolev Spaces. Chapter Hölder spaces

3F1 Random Processes Examples Paper (for all 6 lectures)

a n+2 a n+1 M n a 2 a 1. (2)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

Differentiable Functions

Functions of a Complex Variable (S1) Lecture 11. VII. Integral Transforms. Integral transforms from application of complex calculus

CHAPTER 3 Further properties of splines and B-splines

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4)

Section 2. Basic formulas and identities in Riemannian geometry

INVERSE CURVATURE FLOWS IN HYPERBOLIC SPACE

Transcription:

K(ζ) = 4ζ 2

x = 20

Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ

Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ (R) u i,j := u(a i, θ j ) i j U Q Θ M D M A C : (Θ) Q R Q (Θ) (x) x R := R {, } π Q C( π, Q) = Q π Q ˆ C(π, Q) Q Q ˆ Q ˆ

(QDUΠ) C(π, Q) Q Q,D D Q q i,j = Pr(m j θ i ) m j θ i D d i,j = Pr(a j m i ) a j m i Q γ Q ( (Θ)) i Q θ i Q D (π, U) π U {U i } θ i a i {(U i, θ i, a i )} C(, ) (X) X

Q Q,D D n i=1 π i A j=1 u j,i M q i,k d k,j C(π, Q) k=1 (i, j) j=1 M k=1 q i,k d k,j = Pr(a j θ i ) j i [ A M u j,i q i,k d k,j ] i k=1 [ [ n A M π i u j,i q i,k d k,j ]] i {1,..., n} j {1,..., A } π i u j,i i {1..., n}, j {1,..., A } k {1,..., M } q i,k d k,j q i,k d k,j q i,k d k,j i=1 j=1 k=1

π C(π, Q 1 ) = C(π, Q 2 ) Q 1 Q 2 {(U i, θ i, a i )} C(π, Q) Q γq γ Q C(π, Q) := C(π, R) R Q γq C

π U 0, U 1,..., U J 1 Q 0, Q,..., Q J 1 D 0, D 1,..., D J 1 D j i U i Q j J 1 J 1 ( (Q j D j U j Π) Q (j+1) mod J D j=0 j=0 (j+1) mod J j ) U j Π π U Q D k {1,..., A } k

D d,k l {1,..., A } u k, ΠQ d,k u l, ΠQ d,k u k, u l, k l U U = {U 1, U 2,... U J } U, Ũ U i {1,... n} τ i u i,j i {1,... n} ũ i,j u i,j j = τ i ũ i,j u i,j j τ i j {1,..., A }

( Pr ) Pr ( a u(z, θ) z A a z A ) ũ(z, θ) > C(π, Q) R C R

π (Θ), λ (0, 1), Q 1, Q 2 Q C(π, λq 1 + (1 λ)q 2 ) λc(π, Q 1 ) + (1 λ)c(π, Q 2 ) π (Θ), λ (0, 1), Q 1, Q 2 Q C(π, λq 1 + (1 λ)q 2 ) λc(π, Q 1 ) + (1 λ)c(π, Q 2 ) Q 1 Q 2 2 2 Q 1 = Q 3 = 0.5Q 1 + 0.5Q 2 = 0.5 0.5 0.5 0.5 0.25 0.75 0.25 0.75 Q 2 = 0.75 0.25 0.75 0.25

Q 3 Q 1 Q 2 Q 1 Q 2 Q 3 Q 1 Q 2 R M M π (Θ) Q Q C(π, Q) C(π, QR) Q R Q QR QR Q Q QR Q QR Q 1 Q 2 R Q 1 R = Q 2 Q 2 R = Q 1

C C R M M Q Q, C(π, Q) = C(π, QR) π C U

{c i,j (, )} i {1,..., n}, j {1,..., M } (Θ) [0, 1] π c i,j (π, ) R 2 c i,j (π, ) q 2 > 0 q (0, 1), i {1,..., n}, j {1,..., M } C(π, Q) := i,j c i,j(π, q i,j ) n r

r r n Pr(a = x θ = x) C(π, Q) x θ a C(π, Q) Q C(π, Q)

A = Θ U = ri n r > 0 r(qdπ) P := (QDΠ) = 1 (QD) n r Q D P (r) P (r) Q D D Q D P (r) = 1 n M q i,j i {1,...,n} j=1 P (r) P (r)

x A, y Θ, Pr(θ = x a = x) Pr(θ = y a = x)

C P (r) rp (r) Θ = {1, 2, 3, 4, 5} θ = 2 Θ

ρ Θ x, y, z Θ, ρ(x, y) > ρ(x, z) = Pr(a = y θ = x) < Pr(a = z θ = x) ρ Θ Θ ρ(x, y) = x y C : (Θ) Q R

I H I(π, Q) := α(h(π) E[H(π Q)]) n = α π i ln π i n π i M i=1 i=1 j=1 ( ) π i q i,j q i,j ln n k=1 p kq k,j α > 0 0 ln 0 = 0 0 ln 0 0 = 0 π i = 1 i {1,..., n} Θ n C(π, Q) = I(π, Q) := α(h(p) E[H(π Q)]) α > 0 C P (r) = exp ( α) r n 1+exp( α) r 1 n 1+exp( r α) Q 1 = 1 4 1 4 1 4 1 4 1 16 1 8 3 16 1 4 1 8 3 16 1 4 1 16 9 16 7 16 5 16 7 16 Q 2 = 1 8 1 8 1 8 1 8 7 96 7 48 7 32 7 24 7 48 7 32 7 24 7 96 21 32 49 96 35 96 49 96 Q λ := λq 1 + (1 λ)q 2, λ [0, 1] I(π, Q λ ) = λi(π, Q 1 + (1 λ)i(π, Q 2 )

α θ Q, Q Q = QR R Q Q C(Q) = 0, Q = Q κ, Q = Q, Q

κ = 30 q = 0.3 q = 0.8 κ Q Q Q q q κ q κ r q κ rq r κ q q q r > κ q q q

Θ R θ 1 < θ 2 <... < θ n ˆm N(θ, σ 2 ) θ ζ 2 := σ 2 K(ζ) K ˆm θ Pr(θ ˆm) = ϕ ( ) ˆm θ σ σ ϕ ( ) ˆm θ i = σ σ 1 1 n n 1 1 i=1 n n i=1 1 ϕ ( ) ˆm θ σ σ 1 ϕ ( ) ˆm θ i σ σ ϕ( ) q q Q Q Θ θ 1 θ n K

ˆm θ θ θ 1 ˆm 1 2 (θ 1 + θ 2 ) θ i ˆm [ 1 2 (θ i 1 + θ i ), 1 2 (θ i + θ i+1 ) ] i {2, 3,..., n 1} θ n ˆm 1 2 (θ n 1 + θ n ) i j = Pr(a = θ i θ = θ j ) Pr ( ˆm 1 2 (θ 1 + θ 2 ) θ = θj ), i = 1 Pr ( ˆm [ 1 2 (θ i 1 + θ i ), 1 2 (θ i + θ i+1 ) ] θ = θj ), i {2, 3,..., n 1} Pr ( ˆm 1 2 (θ n 1 + θ n ) θ = θ j ), i = n = Pr(a = θ i θ = θ j ) Φ ( ζ ( 1 2 (θ 1 + θ 2 ) θ j )), i = 1 Φ ( ζ ( 1 2 (θ i+1 + θ i ) θ j )) Φ ( ζ ( 1 2 (θ i + θ i 1 ) θ j )), i {2, 3,..., n 1} Φ ( ζ ( 1 2 (θ n 1 + θ n ) θ j )), i = n Φ

ζ [0, ) [ r Φ n ( ) 1 2 ζ(θ n 1 1 θ 2 ) + +1 Φ i=2 ( ( 1 Φ ( )] 1 2 ζ(θ n 1 θ n ) ) 2 ζ(θ i+1 θ i ) K(ζ) ( )) 1 Φ 2 ζ(θ i 1 θ i ) δ θ i θ i 1 = 2δ i 2 ζ [0, ) r [2Φ (ζδ) + (n 2) (2Φ (ζδ) 1)] K(ζ) n θ 1 ˆm 1(θ 2 1 + θ 2 ) Pr ( ˆm 1(θ 2 1 + θ 2 ) ) ( [ θ = θj > Pr ˆm 1 (θ 2 1 + θ 2 ), 1(θ 2 2 + θ 3 ) ] ) θ = θj j 2 θ 2 θ n 1

K(ζ) = 4ζ 2 x Θ, y, z Θ \ {θ 1, θ n }, x y > x z = Pr(a = y θ = x) < Pr(a = z θ = x) K( ) {m 1, m 2,..., m n } K

Q q i,j = Pr(m = m i θ = θ j ) = Φ ( ζ ( 1 2 (θ 1 + θ 2 ) θ j )), i = 1 Φ ( ζ ( 1 2 (θ i+1 + θ i ) θ j )) Φ ( ζ ( 1 2 (θ i + θ i 1 ) θ j )), i {2, 3,..., n 1} Φ ( ζ ( 1 2 (θ n 1 + θ n ) θ j )), i = n C(π, Q) = K(ζ) Q r(qdπ) (QDΠ) K : [0, 1] R C(π, Q) = K ( M j=1 i {1,...,n} π i q i,j ) Q q i,i = q i {1,..., n} q [ 1 n, 1] q K K ( 1 n) < r < K (1) q r = K (q) q i,j = 0 j > n q = P (r) Q D

A q q K(q) K r = K (q) P (r) = (K ) 1 (r)

n = 81 n = 80 n = 80 n = 81 n = 80 p = 0.146 t r t θ t a t y t := {θt} (a t ) y t t

Monotone Nonparametric Regression: Subject 3 Correct 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100 Incentive Level P t := Pr(y t = 1 r t ) = Pr(a t = θ t r t ) t

2 < < <

(r 1, r 2 ) r 1 > r 2 P (r 1 ) P (r 2 ) r 1 r 2

Rejects NIAC (Lab Subject 1) Fails to reject NIAC (Lab Subject 19) Correct 0.0 0.2 0.4 0.6 0.8 1.0 Correct 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100 0 20 40 60 80 100 Incentive Level Incentive Level

Pr(θ a)

Fails to Reject Non Responsiveness (Lab Subject 32) Rejects Non Responsiveness (Online Subject 26) Correct 0.0 0.2 0.4 0.6 0.8 1.0 Correct 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100 0 20 40 60 80 100 Incentive Level Incentive Level >

r

P t = β 0 + β 1 1 δ (r t ) β 0 β 1 δ P t = β 1 1 + exp( λ(r t δ)) + β 0 λ λ = β 1

{38,..., 42} t ρ(a t, θ t ) = a t θ t {1, 2, 3, 4}

P t = β 0 + β 1 1 δ (r t )

P t = β 0 + β 1 1 δ (r t ) + β 2 r t + β 3 r t 1 δ (r t ) δ q = ˆβ 0 q = ˆβ 0 + ˆβ 1 δ κ κ = ˆδ( ˆβ q q 1 ˆβ 0 ) K r 1 r 2

r 2P K(P ) r1p P P t = β 0 + β 1 r t

K(P ) K(P ) = 1 2 ˆβ 1 (P 2 0.04) ˆβ 0 ˆβ 1 (P 0.2) K ( 1 n) = 0 P t = 1 4 exp ( r t α ) + 1 ( ( ) ) 4P K(P ) = ˆα P ln + ln(1 P ) + ln(1.25) 1 P ζ 2 K(ζ) = αζ 2 α

P t = 8 ( ) ζ 5 Φ (r t ) 3 2 5 ζ αζ = 2 ( ) ζ 5 r tϕ 2

Dots: subject 6 Binary in red Correct 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100 Incentive Level

Dots: subject 14 Logistic in red Correct 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100 Incentive Level

Dots: subject 66 Concave (Normal) in red Correct 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100 Incentive Level

< < <

< < <

2 < < < 2 < < <

n x

r r (x r)p (r) r [0,x] P (r) x r

κ r κ r κn r n n 1 x < κn n 1 x κn n 1 r = κn n 1 x x κn x κn2 n n 1 x x < x κn2 (n 1) 2 κn < (n 1) 2 n 1 κn2 (n 1) 2 κn2 (n 1) 2 κn2 (n 1) 2 κn n 1 x κ = 40 α r

x r (n 1) exp ( r α ) + 1 x r x r (x) n = 5 α = 10 x [5, 100] r

x = 20 r (x) r x

r (x)

κ = 40 α = 10

k

µ ν λ ρ l r λ ρ m λ m ρ

m s s m s y s y

S λ ρ R R l r l r S: 10 15 15 10 R: 10 0 0 10 N λ (0.5) ρ (0.5) R R l r l r S: 10 15 15 10 R: 10 0 0 10

S: R: N µ (0.5) ν (0.5) S N λ ρ λ (0.5) ρ (0.5) S S S S mλ mρ mλ mρ mλ mρ mλ mρ R R R R R R R R l r l r l r l r l r l r l r l r 10 10 15 10 15 15 10 15 10 10 10 10 10 15 10 15 15 10 15 0 0 0 0 10 0 10 0 0 10 0 10 10

l r m λ Pr(l m λ ) > Pr(r m λ ) Pr(l m ρ ) [Pr(r m λ ), Pr(l m λ )] ρ m λ m λ ρ m ρ λ r m λ l m ρ λ ρ Pr(λ µ) > Pr(ρ µ) Pr(λ) > Pr(ρ) m x Pr(λ m x ) > Pr(ρ m x ) m λ m λ l Pr(λ m ρ ) Pr(ρ m ρ ) m ρ l ρ m λ Pr(λ m ρ ) < Pr(ρ m ρ ) m ρ r ρ l m λ

Pr(λ µ) = Pr(ρ µ) = 1 2 Pr(λ) = Pr(ρ) = 1 2 Pr(λ m λ ) = Pr(λ m ρ ) = 1 Pr(λ) = Pr(ρ) = 1 2 2 1 2 = Pr(λ m λ ) = Pr(m λ λ) Pr(λ) Pr(m λ λ) Pr(λ) + Pr(m λ ρ) Pr(ρ) Pr(m λ λ) Pr(m λ λ) + Pr(m λ ρ) Pr(m λ λ) = Pr(m λ ρ) Pr(m ρ λ) = Pr(m ρ ρ) Pr(λ) Pr(m λ λ)+pr(ρ) Pr(m ρ ρ) Pr(λ) Pr(m ρ λ)+ Pr(ρ) Pr(m λ ρ) Pr(m λ λ) = Pr(m λ ρ) Pr(m ρ λ) = Pr(m ρ ρ) m ρ Pr(λ m ρ ) = 1 2 m ρ ρ 1 2 m ρ λ 1 2

c m x y x y f(x) f(λ) := l f(ρ) := r Pr (y m x ) y m x Pr (λ m λ ) = Pr (ρ m ρ ) =: α

10α 10(1 α) α 1 2 β := Pr S ( α 1 2) α β c 10β 5 c 10β 5 β 15β + 10(1 β) c 10β + 15(1 β) c 10β 5 (15 c)β + 10(1 β) 10β + 15(1 β) c 10β 5 β

u i i {R, S} (π, π ) u S (π, π ) = π + γπ, γ > 0 u A := u(15, 0) u B := u(10, 10) u A u B β 1 u 2 A u B β 1 2 u A β + u B (1 β) u A (1 β) + u B β

u A u B β 1 2 u A u B β 1 2 u = π θ max{0, E α [π ] π } u π π α

θ 1 2 10(1 β) + (15 10θβ)β 10β + (15 10θ(1 β))(1 β) θ 1 2 c < 5 c > 5

ζ := Pr(l m λ ) = Pr(r m ρ ) Pr(λ µ) = Pr(ρ µ) = 1 2 ϕ := Pr(m λ λ, c = 0) = Pr(m ρ ρ, c = 0) ξ = Pr(c = ) ξ 1 2 ζ = 1 ϕ = 0 ξ 1 2

ζ = 1 1 2ξ ϕ = 2 2 2ξ 15ζ + 10(1 ζ) 10ζ + 15(1 ζ) ζ 1 2 10ξ + 10(1 ξ)ϕ 10(1 ξ)(1 ϕ) ξ ξϕ + ϕ 1 2 ϕ [0, 1] ξ 1 2 ϕ = 0 ξ 1 ϕ ϕ = 0 2 ξ = 1 2 ζ = 1 2 ϕ = 1 2ξ 2 2ξ

ξ < 1 2 1 2ξ 1 ξ µ ν

S knows order; R does not S knows order; R does not Round 1 Round 2 Scenario 1 Scenario 2 OR Scenario 2 Scenario 1 Scenario 1 Scenario 2 OR Scenario 2 Scenario 1 match rematch rematch switch roles rematch

n = 108 52.8% 47.2% 52.8% 13.0% 34.3% 14.8% p = 0.630

χ 2 = 91.9 p < 0.001 p = 0.0053 D = 0.052 p = 0.029

< < <

χ 2 = 78.5 p < 0.001 p = 1.000 55.4% p = 0.0048 D = 0.067 p < 0.001

< < <

< < <

p < 0.001

R 2 R 2 < < <

I i = 1,..., I J j = 1,..., J a i,j j i A I J a i := (a i,j ) J j=1

i i u i := u( a i ) := J j=1 a i,j F i,j f i,j F i,j j f i,j = f k,j f f i u i E[(u i û i ) 2 ] û i u i J E[(a i,j â i,j ) 2 ] j=1 â i,j a i,j

r i,j g i ( r i a i ) r = ((r i,j ) J j=1 C(f i, g i ) f g [ C(f i, g i ) = κ + r i f i ( a i ) ln(f i ( a i ))d a i a i ( g i ( r i a i )f i ( a i ) ln a i g i ( r i a i )f i ( a i ) bi g i ( r i b i )f i ( b i )d b i ) d r i d a i ] κ > 0 C(f i, g i ) [ J = κ f i,j (a i,j ) ln(f i,j (a i,j ))da i,j j=1 a i,j ( ) ] g i,j (r i,j a i,j )f i,j (a i,j ) + g i,j (r i,j a i,j )f i,j (a i,j ) ln dr i,j da i,j r i,j a i,j b i,j g i,j (r i,j b i,j )f i,j (b i,j )db i,j g i,j r i,j

g i E[(u i û i ) 2 ] + C(f i, g i ) â i,j h i,j (a i,j, r i,j ) := g i,j (r i,j a i,j )f i,j (a i,j ) b i,j g i,j (r i,j b i,j )f i,j (b i,j )db i,j a i,j r i,j â i,j u i û i = J j=1 â i,j û i â i,j α i,j := σ2 f i,j σ 2 h i,j σ 2 f i,j j i σ 2 q q

] σh 2 i,j [0, σ 2fi,j α i,j i u( a i ) = J j=1 a i,j u( a i, A) = J γ j ( j (A))a i,j j=1 γ j j (A) := max j a i,j min j a i,j j

Φ ϕ ( h i,j = f i,j h i,j (a i,j r i,j ) = 1 ϕ a µhi,j ) µ σ hi,j σ = κ 2 σ σ hi,j = min { κ 2, σ f i,j }

α i,j = 1 σf 2 2 i,j κ h a i,j N(µ j, σj 2 ) σ j > κ 2 i â i,j = 2σ2 j κ r 2σj 2 i,j + κ µ 2σj 2 j r i,j µ j σj 2 û i = J γ(σ j 2 )r i,j j=1 γ(x) := 2x κ 2x γ(σ2 j ) γ j ( j (A))

i u( a i ) = J j=1 a i,j u( a i, A) = J ω i,j a i,j j=1 ω i,j a i,j ā j s(, ) ϵ, η 0 a i,j > ā j s(a i,j + ϵ, ā j η) > s(a i,j, ā j ) a i,j < ā j s(a i,j ϵ, ā j + η) > s(a i,j, ā j ) a i,j, ā j 0 ϵ > 0 s(a i,j + ϵ, ā j + ϵ) > s(a i,j, ā j )

s(a i,j, ā j ) ρ i,j J ω i,j ω i,j = δ r i,j J l=1 δr i,l δ (0, 1)

j a d 1 j (1),j <... < a d 1 j (I),j d j I j f ) ad i,j (a i,j ) := f i,j (a i,j 1 j (1),j <... < a d 1 (I),j (i, j) I = 3 j f i,j d j

N(µ j, τj 2 ) τ j > κ 2 τ j = τ j V E,j j V M,j j ( V E,j = τ (1 2 9 2 3 ) V 4π M,j = τ 2 1 ) 3 V π M,j < V E,j V E,j V M,j j

γ j

{(U i, θ i, a i )} C(π, Q) C Q γq γ Q C(π, Q) := C(π, R) R Q γq γ Q Q γq C C C b : Q ( (Θ)) b ( (Θ)) {( ) n πsq (b(q)) = s,k n l=1 π lq l,k k {1,... M }, } n l=1 π lq l,k > 0 s=1 ζ (b(q)) n k Q ζ l=1 π lq l,k Q ζ Q ζ Q 1, Q 2,... Q Q lim b(q j ) = b(q) j lim b(q j )(X) = j b(q)(x) X σ (Θ) X X (b(q)) = X (b(q)) = (X) (b(q)) X (b(q)) = J N b(q j )(X) = 0 j > J lim b(q j )(X) = b(q)(x) = 0 J N, j > J j X (b(q j )) lim b(q j )(X) 0 j X X

ε > 0 J N, j > (( J ) b(q j )(X) > ε n ) πsq Q jh s,k n l=1 π lq l,k k s=1 j h (X) b(q)(x) = 0 X b(q)( X) > 0 X lim b(q j )(X) = b(q)(x) j (X) (b(q)) (Q j ) (Q j ) ((z k ) j ) := (( n ( l=1 π lq l,k ) j ) z k ((y k ) j ) := (( ) n ) ) πs q s,k n l=1 π lq l,k y k z k > 0 s=1 j z k = 0 ( ) π πs q (Q j ) (Q j ) y k = s,k n l=1 π lq l,k z k = n l=1 π lq l,k q l,k Q K {1,..., M} {((y k ) j ) k K} (X) (X) ε > 0 k K, N k j > N k, (y k ) j (X) N = N k j > N, b(q j )(X) ( k K ( n l=1 π lq l,k )) j k K b(q j )(X) k K ( n l=1 π lq l,k ) j j J N j > J (Q jh ) b(q jh )(X) k K ( n l=1 π lq l,k ) jh > 0 j h j h k K (y k ) jh (b(q jh )) M k ((y k ) jh ) (X) y k (X) k K y k X [ X ((y k ) jh ) z k = 0 lim b(qjh )(X) k K ( n l=1 π ] h lq l,k ) jh = 0 b γ ( (Θ)) b 1 ({γ}) b 1 ({γ}) Q Q R n R M b 1 ({γ}) Q γq C π Q γq C k Q jh k (y k ) j k j (z k ) j = 0 j (Q j ) j j (z k ) j (Q j ) (z k ) j 0 j, k (z k ) j

D I A 1 0 0 D := 1 0 0 I A A A D ( M A ) A Q Q D (QDUΠ) D δ : {1,..., M } {1,..., A } δ(j) j D j Q a δ(j) Q Q δ k {1,..., A } k Q j δ 1 (k) q,j q,j j Q k > A Q (Q, D) (Q, D) Pr(a θ) a A, θ Θ (i, j) Q D q i,j = k δ 1 (j) q i,k j A q i,j = Pr(a j θ i ) D j j j A k δ 1 (j) q i,k = Pr(a j θ i ) D j δ 1 (j) (QDUΠ) = (Q DUΠ) (Q, D) (Q, D) M M P p i,j p i,δ(i) = 1 i P i δ(i) Q = QP P C(π, Q ) C(π, Q) Q π Q Q Q Q D Q Q Q D Q Q (Q DUΠ) C(π, Q)

F (Q) F (Q) Q U Q Q (U) U F (Q) F (Q) U Q (U) Q 1, Q 2 Q (U) F (Q 1) = F (Q 2) Q 1 Q 2 λ (0, 1), F (λq 1+(1 λ)q 2) λf (Q 1)+(1 λ)f (Q 2) = F (Q 1) Q 1 Q 2 Q 1 Q 2 λ (0, 1) F (λq 1 + (1 λ)q 2) = λf (Q 1) + (1 λ)f (Q 2) λ Q λ Q (U) Q λ Q 1 Q 2 (Q λ DUΠ) = (Q 1 DUΠ) = (Q 2 DUΠ) (Q (U) DUΠ) U C c i,j C(π, Q) n M n M 2 c i,j (π, ) qi,j 2 C π r 1 r 2 Q i r i i = 1, 2 D j i Q i r j i, j = 1, 2 D i := Di i = D i i i = 1, 2

r 1 (Q 1 D 1 Π) + r 2 (Q 2 D 2 Π) r 2 (Q 1 D 1 Π) + r 1 (Q 2 D 2 Π) = r 1 P (r 1 ) + r 2 P (r 2 ) r 2 P (r 1 ) + r 1 P (r 2 ) = (r 1 r 2 )[P (r 1 ) P (r 2 )] 0 r 1 r 2 P (r 1 ) P (r 2 ) r 1 r 2... r N P 1 P 2... P N P i := P (r i ) P (r i, P σ1 (i)) N i=1 σ 1 σ 2 1, i = 1 σ 2 (i) := σ 1 (1), i = σ 1 1 (1) σ 1 (i), σ 2 σ 1 N r j P σ2 (i) j=1 N r j P σ1 (i) j=1 = r 1 P 1 + r σ1 1 (i)p σ1 (1) ( ) r 1 P σ1 (1) + r σ1 1 (i)p 1 = ( ( ) r 1 r σ1 (i)) 1 P1 P σ1 (1) 0, r 1 r σ1 1 (i) P 1 P σ1 (1) j 2 σ j+1 j, i = j σ j+1 (i) := σ j (j), i = σ 1 j (j) σ j (i), N N 1 σ N (i) = i (r i, P σ1 (i)) N i=1

x A y Θ Pr(θ = x a = x) Pr(θ = y a = x) r Pr(θ = x a = x) + 0 Pr(θ = z a = x) z x r Pr(θ = y a = x) + 0 Pr(θ = z a = x) z y u(x, z) Pr(θ = z a = x) u(y, z) Pr(θ = z a = x) z Θ z Θ Pr(a = x θ = z) Pr(θ = z) u(x, z) z Θ Pr(a = x) Pr(a = x θ = z) Pr(θ = z) u(y, z) z Θ Pr(a = x) u k, ΠQ d,k u l, ΠQ d,k, x y k l Θ (i, j) Q D Pr(a j θ i ) x y E[H(π Q)]) = γ Q (ˆπ)H(ˆπ) ˆπ (γ Q ) γ Q γ Q Q I(π, Q) = α(h(π) E[H(π Q)]) Q P P π Q QP I(π, Q) I(π, QP ) I x ln y = 0 lim x ln y (x,y,z) (0,0,0) z = 0 lim (x,y) (0,0)

Q( ) D j {1,..., M } π i qi,j i {1,...,n} d,j (Q D Π) = M j=1 i {1,...,n} π i q i,j n j, j {1,..., M }, G j,j := π i qi,j π i qi,j i {1,...,n} i {1,...,n} Q Q Q Q j j q q,j + q,j q j π i qi,j = G j,j π i q i {1,...,n} i {1,...,n},j = i,j = π i qi,j + π i qi,j Q i {1,...,n} i {1,...,n} Q M j=1 i {1,...,n} π i q i,j = M j=1 i {1,...,n} π i q i,j Q Q j > n q,j j n q,j = { M } q k π i qi,j =j,k i {1,...,n} M j=1 i {1,...,n} π i q i,j = j=1 i {1,...,n} π i q i,j D D (Q D Π) = (Q D Π) (Q D Π) = M π i q i,j = n π i q i,i j=1 i {1,...,n} i=1 ( n C(π, Q ) = K Q Q r π i q i,i i=1 ) ( n n π i q i,i K π i q i,i i=1 i=1 ) π i q i,i = k π k q k,i i n q rq K(q) q i,i q i n q 1 q 1 n K q i,i r = K ( n i=1 π i q i,i )

K Q (q i,i) n i=1 Q q i,i = q i n q := (K ) 1 (r) q i,j = 1 q j i, i n n 1 P (r) = n π i q i,i = q n π i = q = (K ) 1 (r) i=1 r K i=1 β ζ δ Φ((ξ + β)ζδ) Φ(ξζδ) ξ ξ ξ ξ ζδ[ϕ((ξ + β)ζδ) ϕ(ξζδ)] ξ ξ ξ = 2k + 1 β = 2 k 1 ξ = 2k+3 θ n 1 θ n θ n 1 θ n Φ(ζδ) Φ(0) > Φ(2ζδ) Φ(ζδ) Φ(ζδ) Φ(0) > Φ(3ζδ) Φ(2ζδ) = 2[Φ(ζδ) Φ(0)] > Φ(3ζδ) Φ(ζδ) = Φ(ζδ) Φ( ζδ) > Φ(3ζδ) Φ(ζδ) Φ(ζδ) Φ( ζδ) ζ [0, ) r [2Φ (ζδ) + (n 2) (2Φ (ζδ) 1)] K(ζ) n

ζ [0, ) r [(2n 2)Φ (ζδ) (n 2)] K(ζ) n F (r, ζ) (2n 2)rδ ϕ(ζδ) K (ζ) = 0 n (2n 2)rδ3 ζϕ(ζδ) K (ζ) < 0, n ζ P (r) = 1 [(2n 2)Φ(ζ(r)δ) (n 2)] n P (r) d 2 P = dp [ (2n 2)δ ϕ(ζδ) dζ ] dr 2 dr n dr (2n 2)δ3 = ζϕ(ζδ) dζ (2n 2)δ + ϕ(ζδ) d2 ζ n dr n dr 2 dζ d2 ζ dr dr 2 dζ dr = F r F = > 0 ζ (2n 2)δ n (2n 2)rδ 3 n ϕ(ζδ) ζϕ(ζδ) + K (ζ)

r [ ] d 2 ζ (2n 2)rδ 3 2 dr = ζϕ(ζδ) + K (ζ) 2 n (2n 2)δ3 { ζϕ(ζδ) dζ ( ) (2n 2)rδ 3 ζϕ(ζδ) + K (ζ) n dr n [( (2n 2)δ 3 (2n 2)rδ3 dζ ζϕ(ζδ) + n n dr ϕ(ζδ) (2n 2)rδ5 ζ 2 dζ ) n dr ϕ(ζδ) + K (ζ) ( )]} (2n 2)δ ϕ(ζδ) n [ ] (2n 2)rδ 3 2 = ζϕ(ζδ) + K (2n 2)δ3 (ζ) { ζϕ(ζδ) dζ n n dr K (ζ) [( ) (2n 2)δ 3 (2n 2)rδ3 dζ ζϕ(ζδ) + n n dr ϕ(ζδ) + K (ζ) ( )]} (2n 2)δ ϕ(ζδ) n < 0 d 2 ζ dr 2 d2 P dr 2 < 0 < 0 dζ dr > 0 x r (n 1) exp ( r α ) + 1 r x x r r (x) r ) ( (n 1) exp r ( x r α α ( (n 1) exp ( r α α) 1 ) ) 2 + 1

( ) x r α ( (n 1) exp r ) > (<)1 α α ( ) x r α ( r (n 1) > (<) exp α α) r r r r r (n 1) ( ) ( x r α α = exp r ) α d 2 dr 2 [(x r)p (r)] = d dr [ P (r) + (x r) d dr P (r)] = 2 d dr P (r) + (x r) d2 dr 2 P (r) P (r) x > r r r x r (x) 35 40 45 50 55

2 10 5 < < <

n = 118 n = 117 n = 118 n = 118 p < 0.001 p = 0.003 p < 0.001 p = 0.009

j i E[(a i,j â i,j ) 2 ] + C(f i,j, g i,j ) g r i,j(r i,j )dr i,j = 1 a R i j [ ( ) ] 2 L = r + r a 2 a a g(r a)f(a) b g(r b)f(b)dbda a g(r a)f(a) b g(r b)f(b)dbda g(r b)f(b)db dr b ( ) g(r a)f(a) κg(r a)f(a) ln g(r b)f(b)db da dr + λ(a)g(r a)f(a)da dr b r a λ(a) = ν(a)/f(a) ν(a) η(r, a) lim r η(r, a) = lim r η(r, a) = lim a η(r, a) = lim a η(r, a) = 0 λ(a)

J(ε) := r [ + + r r a 2 (g(r a) + εη(r, a))f(a)da ( a a a a a((g(r a) + εη(r, a))f(a))2 g(r a)f(a)da a ( (g(r a) + εη(r, a))f(a) κ(g(r a) + εη(r, a))f(a) ln (g(r b) + εη(r, b))f(b)db b ] λ(a)(g(r a) + εη(r, a))f(a)da dr ) da J ε ε=0 [ ( ( ) g(r a)f(a) 0 = η(r, a)f(a) a 2 + κ ln r a g(r b)f(b)db b ) ( a + η(r, a)f(a)da (ag(r a)f(a)da)2 a a ( (g(r a)f(a)da)2 2 aη(r, a)f(a)da ag(r a)f(a)da ) a a g(r a)f(a)da a ] g(r a)f(a) + κη(r, b)f(b)db b g(r b)f(b)dbda dr a b ) + κ + λ(a) da η eta ln h(a r) = λ(a) κ (a µ h) 2 κ h µ h ( h(a r) = 1 σ 2π exp 1 ( ) ) 2 a µh 2 σ σ = κ λ(a) = κ ln( κπ) 2 µ h κ 2 h κ < 2 σ2 f σ2 f a i,j r i,j a i,j a i,j r i,j a N(µ, σ 2 f ) r N(a, σ2 g)

a r N ( σ 2 f r+σ 2 g µ σ 2 f +σ2 g ), σ2 f σ2 g σf 2+σ2 g σh 2 κ 2 κ = σ2 f σ2 g 2 σf 2+σ2 g σ 2 g = κσ2 f 2σ 2 f κ µ h := σ2 f r+σ2 gµ σ 2 f +σ2 g 2σf 2 κ r + 2σ 2 f κ 2σ 2 f µ x y z x > y > z x, y, z N(µ, σ 2 ) ϕ Φ x f(x x > y > z) f(x x > y > z) = Pr(x > y > z) x y f(x, y, z)dz dy = 1, x y z 6 x y ( ) ( ) ( ) 1 x µ y µ z µ = 6 σ ϕ ϕ ϕ dz dy 3 σ σ σ x ( ) ( ) ( ) 1 x µ y µ y µ = 6 σ ϕ ϕ Φ dy 2 σ σ σ = 6 1 ( ) x µ Φ ( x µ σ ϕ σ ) t dt, 2 σ = 3 ( ) ( ) x µ x µ σ ϕ Φ 2 σ σ

y f(x x > y > z) y ( ) ( ) ( ) 1 x µ y µ z µ = 6 y σ ϕ ϕ ϕ dz dx 3 σ σ σ = 6 1 ( ) ( ) [ ( )] y µ y µ y µ σ ϕ Φ 1 Φ σ σ σ = 6 ( ) [ ( ) ( )] y µ y µ y µ σ ϕ Φ Φ 2 σ σ σ z f(z x > y > z) ( ) ( ) ( ) 1 x µ y µ z µ = 6 x y σ ϕ ϕ ϕ dy dx 3 σ σ σ = 3 ( ) [ ( )] 2 z µ z µ σ ϕ 1 Φ σ σ µ = 0 x 3 = 3σ = 3σ [ ϕ = 3σ π x ( x ) ( x ) σ ϕ Φ 2 dx σ σ x ( x ) ( x ) σ ϕ Φ 2 dx 2 σ σ ( x ) ( x ) Φ 2 +2 σ σ ( ) 2 2x σ ϕ Φ σ ( x σ ) dx 1 ( x ) ( x ) ] σ ϕ2 Φ dx σ σ = 3σ 2, π z 3σ 2 π y

x x 2 ( x ) ( x ) 3 σ ϕ Φ 2 dx σ σ ( x = 3σ 4 2 ( x ) σ ϕ 1 ( x ) ) ( x ) 5 σ σ ϕ Φ 2 dx + 3σ 4 3 σ σ [ = 3σ 4 x ( x ) ( x ) σ ϕ Φ 2 2x ( x ) ( x ) + 3 σ σ σ 4 ϕ2 Φ dx σ σ ( ) = [ ϕ 3σ2 2x ( x ) Φ + 2π σ σ 3σ = σ 2 2 ( ) 3 2x + 2π σ ϕ dx σ ) 3 = σ (1 2 + 2π 1 σ ϕ ( ) 2x σ 1 ( x σ ϕ 3 σ ] + σ 2 ( x ) ϕ dx σ ] ) ( x ) Φ 2 dx σ + σ 2 z x z ) 3 V (x) = V (z) = σ (1 2 + 2π 9 4π y V (y) y 2 ( y = 6 σ ϕ σ ( y = 6σ 4 2 ) [ ( y ) ( y )] Φ Φ 2 dy σ σ σ 5 ϕ ( y σ 2σ 2 (1 + ) 3 2π 1 ( y ) ) ( y ) σ ϕ Φ dy + 6σ 4 3 σ σ ), [ = 6σ 4 y ( y ) ( y ) σ ϕ y ( y Φ + 3 σ σ σ 4 ϕ2 σ = 3σ ( ) ( 2 2y y π σ ϕ dy + 3σ 2 2σ 2 σ = σ 2 (1 ) 3 π 1 + 1 ( y ) ( y ) σ ϕ Φ dy 3 σ σ ) ] ( dy + 3σ 2 2σ 2 1 + ) 3 2π ) 3 2π V (y) < V (x) = V (z)

V (x) V (y) V (z)