Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications)

Similar documents
Applications of interferometers and clocks I. Christian Lisdat

Optical clocks and fibre links. Je ro me Lodewyck

Local time scale at PTB UTC(PTB) Ali Al-masoudi, Stephan Falke, Sebastian Häfner, Stefan Vogt, Christian Lisdat

Titelmasterformat durch Klicken bearbeiten

Optical Clocks at PTB

Titelmasterformat durch About atomic (optical) clocks Klicken bearbeiten

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

High Accuracy Strontium Ion Optical Clock

Atom-based Frequency Metrology: Real World Applications

Search for temporal variations of fundamental constants

Optical Lattice Clock with Neutral Mercury

Mission I-SOC: An optical clock on the ISS

Searching for variations of fundamental constants using the atomic clocks ensemble at LNE-SYRTE

Comparison with an uncertainty of between two primary frequency standards

National Physical Laboratory, UK

Towards a redefinition of the SI second by optical clocks: Achievements and challenges

Optical clock measurements beyond the geodetic limit

Optical Clocks and Tests of Fundamental Principles

arxiv: v2 [physics.atom-ph] 26 Aug 2011

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Quantum Logic Spectroscopy and Precision Measurements

Atomic Clocks and the Search for Variation of Fundamental Constants

When should we change the definition of the second?

Journées Systèmes de Référence Spatio-Temporels 2011 September 19 th 2011 Vienna, Austria

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Atom Quantum Sensors on ground and in space

T&F Activities in NMIJ, AIST

arxiv:physics/ v1 [physics.atom-ph] 7 Nov 2006

THE SPACE OPTICAL CLOCKS PROJECT

Experimental Tests with Atomic Clocks

SR OPTICAL CLOCK WITH HIGH STABILITY AND ACCURACY *

An Optical Lattice Clock with Accuracy and Stability at the Level

Optical Clocks. Tanja E. Mehlstäubler. Physikalisch-Technische Bundesanstalt & Center for Quantum Engineering and Space Time Research

ATOMIC CLOCK ENSEMBLE IN SPACE Mission status

Overview of Frequency Metrology at NMIJ

Clock tests of space-time variation of fundamental constants

Quantum Metrology Optical Atomic Clocks & Many-Body Physics

Frequency ratios of optical lattice clocks at the 17th decimal place

Status Report on Time and Frequency Activities at NMIJ, AIST

State of the art cold atom gyroscope without dead times

Atomic clocks. Clocks

Atomic Clocks. Ekkehard Peik. Physikalisch Technische Bundesanstalt Time and Frequency Department Braunschweig, Germany

Ion traps for clocks and other metrological applications

RACE: Rubidium Atomic Clock Experiment

optical evaluation with a Ca clock

The Yb lattice clock (and others!) at NIST for space-based applications

LETTER. An optical lattice clock with accuracy and stability at the level

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH

Precisely Engineered Interactions between Light and Ultracold Matter

Overview of Frequency Metrology at NMIJ

An accurate optical lattice clock with 87Sr atoms

Fundamental Constants and Units

International Conference on Space Optics ICSO 2006 Noordwijk, Netherlands June 2006

Overview of Frequency Metrology at NMIJ

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

Progress of Ytterbium Ion Optical Frequency Standard in India

Status of the ACES/PHARAO mission

Dr. Jean Lautier-Gaud October, 14 th 2016

Absolute frequency measurement at level based on the international atomic time

A clock network for geodesy and fundamental science

Recent advances in precision spectroscopy of ultracold atoms and ions

A second generation of low thermal noise cryogenic silicon resonators

Tunneling in optical lattice clocks

Status Report of Time and Frequency Activities at NPL- India

Uncertainty evaluation of the caesium fountain clock PTB-CSF2

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics

Demonstration of a Dual Alkali Rb/Cs Atomic Fountain Clock

Forca-G: A trapped atom interferometer for the measurement of short range forces

Laser Cooling of Thulium Atoms

Towards compact transportable atom-interferometric inertial sensors

Development of a compact Yb optical lattice clock

Motion and motional qubit

1. Introduction. 2. New approaches

Atomic fountain clocks

Atomic Quantum Sensors and Fundamental Tests

Test of special relativity using a fiber network of optical clocks

Microwave clocks and fountains

Laser-based precision spectroscopy and the optical frequency comb technique 1

RECOMMENDATION 1 (CI-2002): Revision of the practical realization of the definition of the metre

CESIUM ATOMIC FOUNTAIN CLOCKS AT NMIJ

Second-order magic radio-frequency dressing for magnetically trapped 87. Rb atoms

arxiv: v2 [physics.atom-ph] 2 Mar 2016

Experimental Set-up of the 532nm Green Laser for the Measurement of the AC Stark Shift in a Cesium Fountain Clock

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS

Atom interferometry in microgravity: the ICE project

Cold Atom Clocks on Earth and in Space Fundamental Tests and Applications. C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris

Search for physics beyond the standard model with Atomic Clocks

The absolute frequency of the 87 Sr optical clock transition

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

Lecture 11, May 11, 2017

Optical frequency comb and precision spectroscopy. Fundamental constants. Are fundamental constants constant? Precision spectroscopy

Determining α from Helium Fine Structure

Atom Interferometry for Detection of Gravitational Waves. Mark Kasevich Stanford University

INT International Conference, Frontiers in Quantum Simulation with Cold Atoms, March 30 April 2, 2015

Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Cold Magnesium Atoms for an Optical Clock

Lecture 3 Applications of Ultra-stable Clocks

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency

Transcription:

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications) Ali Al-Masoudi, Sören Dörscher, Roman Schwarz, Sebastian Häfner, Uwe Sterr, and Christian Lisdat

Outline Introduction Stationary clock Local comparison (Yb + ) Remote comparison (Paris) Summary 2

Atomic clocks interrogation T i oscillator ν osc t atomic reference ν 0 clock cycle correction detection frequency offset Δν stable frequency output 3

polarisability / arb. u. 87 Sr lattice clock (5s6s) 3 S 1 1 S 0-3 P 0 clock transition (ν 0 429 THz). Γ 2π 1 mhz in fermionic 87 Sr (I = 9/2). (5s5p) 1 P 1 Optical lattice at magic wavelength: Differential light shift cancelled. Shifts due to atomic motion suppressed (Lamb Dicke regime). (5s5p) 3 P J 698 nm (clock) J = 2 J = 1 J = 0 3 P 0 3 D 1 3 P 0 3 S 1 (5s 2 ) 1 S 0 magic wavelength (λ m 813 nm) lattice frequency / THz 4

Stationary clock (5s6s) 3 S 1 (5s5p) 1 P 1 200 ms Zeeman slower 1 st stage MOT (461 nm) 90 ms 50 ms 2 nd stage MOT (689 nm) 3 rd stage MOT (689 nm) 461 nm J = 2 65 ms transfer to 1D lattice & state preparation (m F = ±9/2) 689 nm J = 1 J = 0 (5s5p) 3 P J 600 ms interrogation (698 nm) 698 nm (clock) detection n = n 0 ± dn (5s 2 ) 1 S 0 Lattice orientation: horizontal (θ 0.12 ) Atom number: < 1000 Temperature: < 1 µk (ax.) / < 2 µk (rad.) Cycle duration: ca. 1 s 5

Sr-1: Systematic uncertainty u syst 2 10-17 Limiting factors: Temperature gradients (blackbody radiation) Lattice orientation (tunnelling vs. light shifts) effect correction (in 10-17 ) uncertainty (in 10-17 ) BBR, ambient 492.78 1.26 BBR, oven 0.94 0.94 lattice, scalar+tensor -0.69 0.89 lattice, E2/M1 pol. 0 0.34 lattice, hyperpol. -0.39 0.18 tunneling 0 0.21 AOM efficiency 0 0.20 servo error 0 0.18 Zeeman, 2 nd order 3.61 0.15 cold collisions -0.01 0.13 DC Stark shift 0 0.034 probe light 0.002 0.002 line pulling 0 0.0003 optical path length 0 0.0001 total 496.3 1.9 6

temperature / C Blackbody radiation shift 4 6 8 T T T n BBR n dc( T0 ) n ( 4 dyn T0 ) O 6 8 T 0 T0 T0 atomic response to BBR BBR (Temperature) Uncertainty Temperature gradient n dc ( T 0 ) 5 600 mk 19 10 17 22.0 1.26 10 n dyn ( T 0 ) 1.5 10 18 21.5 T. Middelmann, et al., Phys. Rev. Lett., 109, 263004 (2012) T. Nicholson, et al., Nature Com. 6, 6896, (2015) 06:00 12:00 18:00 00:00 06:00 12:00 time 21.0 7

Blackbody radiation shift ylindrical copper Parameters: Copper Outer diameter= 32 mm Inner diameter = 10 mm Length = 83.2 mm Orifice radius = 0.5 mm Graphite tube BK7 Glass Graphite Outer diameter = 10 mm length = 50 mm 20mm 8

Blackbody radiation shift Transport distance = ( 40 50 ) mm Transport time = 350 ms 20mm 9

frequency shift (MOT - CF) / Hz Blackbody radiation shift 0 Accuracy 8-9 * 10-18 possible -1-2 11:00 14:00 17:00 20:00 time 10

Instability Instability 11

y ( ) Instability 10-15 ( ) y n n 1 N T C 10-16 10-17 10-18 10 0 10 1 10 2 10 3 10 4 averaging time (s) 12

Allan deviation Instability 10-14 Cs fountain clock 10-15 Yb + single ion 10-16 few s 10 3 s 10 6 s 10-17 Sr lattice clock 10-18 10 0 10 1 10 2 10 3 10 4 10 5 averaging time (s) 13

Noise analysis: total Allan deviation Instability Detection limited by QPN for > 130 atoms. Aliased laser noise still dominant (Dick effect). Predicted interleaved instability matches observation. Best published instability for normal operation! σ y (τ) = 1.6 10-16 (τ/s) -1/2 A. Al-Masoudi et al., Phys. Rev. A 92, 063814 (2015) excitation probability noise pe 0.1 0.01 10-16 QPN Electronic noise All without laser noise Shot noise 10 100 1000 g + e 2o (counts) 10-17 10-18 10 0 10 1 10 2 10 3 10 4 averaging time (s) 14

excitation Probability excitation probability excitation Probability Instability From Rabi to Ramsey 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0-300 -200-100 0 100 200 300 Scan Hz Δν 0.0-200 -150-100 -50 0 50 100 150 200 scan Hz 1.0 0.8 0.6 0.4 0.2 0.0-10 -8-6 -4-2 0 2 4 6 8 10 scan Hz 15

sensitivity function g(t) Instability Multi Ramsey Normal Ramsey 1 p g( t) n ( t) t 2 1.0 Normal Ramsey Multi Ramsey 0.8 0.6 0.4 0.2 0.0 0 50 100 150 200 250 300 350 time (ms) 16

excitation probability excitation Probability Instability Multi Ramsey Normal Ramsey 1.0 Theory Data 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0-75 -50-25 0 25 50 75 scan (Hz) 0.0-10 -8-6 -4-2 0 2 4 6 8 10 scan Hz 17

excitation probability Instability Multi Ramsey Normal Ramsey 1.0 0.8 0.6 0.4 0.2 0.0-3 -2-1 0 1 2 3 applied frequency (Hz) 18

reconstructed phase ( ) sensitivity function g(t) Instability Multi Ramsey Normal Ramsey 1.5 1.0 1.0 Multi Ramsey Normal Ramsey 0.5 0.8 0.0 0.6-0.5 0.4-1.0 0.2-1.5-2 -1 0 1 2 3 applied frequency step (Hz) 0.0 0 50 100 150 200 250 300 350 400 t / ms 19

Applications Applications 20

Local clock comparison: 171 Yb + / 87 Sr PTB s 171 Yb + single-ion clock: Electric-octupole (E3) transition ( 2 S 1/2 2 F 7/2, ν 0 642 THz) 3.9 10-18 systematic uncertainty Instability of 5.3 10-15 (τ/s) -1/2 N. Huntemann, High-Accuracy Optical Clock Based on the Octupole Transition in 171 Yb +, PhD thesis, LU Hannover (2014) Frequency ratio sensitive to variations of α: 171 Yb + clock highly sensitive. 87 Sr clock insensitive. ΔR/R -6 Δα/α V.V. Flambaum and V.A. Dzuba, Can. J. Phys. 87, 25 (2009) 21

Local clock comparison: 171 Yb + / 87 Sr Measurement in 2015: > 80 h of data acquired. Instability of 4.4 10-15 (τ/s) -1/2. Statistical uncertainty 1.3 10-17. Total uncertainty 2.4 10-17. PRELIMINARY 22

Variations of the fine-structure constant α Measurement in 2015: > 80 h of data acquired. Instability of 4.4 10-15 (τ/s) -1/2. Statistical uncertainty 1.3 10-17. Total uncertainty 2.4 10-17. PRELIMINARY courtesy of: Nils Huntemann Drift measurement: Combine ratio measurements from 2012 and 2015. Uncertainty improved by factor 4! Sr/Yb + @ PTB (preliminary): (1/α) (dα/dt) = (7±5) 10-18 / yr Al + /Hg + @ NIST: (1/α) (dα/dt) = (16±23) 10-18 / yr T. Rosenband et al., Science 319, 1808 (2008) 23

Remote clock comparison Collaboration of PTB with participation of the Réseau National de télécommunications, the Institut für Erdmessung of the Leibniz Universität Hannover, and the Laboratoire Photonique, Numérique et Nanosciences. Paris Braunschweig 24

Remote clock comparison Satellite link (TWSTFT, GPS) Paris Braunschweig 25

Remote clock comparison Satellite link: Few 10-16 uncertainty Long averaging times ( weeks) Difficulties due to satellite motion and atmosphere. Satellite link (TWSTFT, GPS) Paris Braunschweig 26

Remote clock comparison Satellite link: Few 10-16 uncertainty Long averaging times ( weeks) Difficulties due to satellite motion and atmosphere. Satellite link (TWSTFT, GPS) Paris Telecom fibre link Braunschweig 27

Remote clock comparison Satellite link: Few 10-16 uncertainty Long averaging times ( weeks) Difficulties due to satellite motion and atmosphere. Telecom fibre link: Uncertainties far below 1 10-18 Short averaging times ( ~ minutes) Satellite link (TWSTFT, GPS) Paris Telecom fibre link Braunschweig 28

Frequency transfer link across 690 km Ch. Lisdat et al., arxiv:1511.07735 (2015) PTB OP 29

total Allan deviation y ( ) First remote clock comparison Ch. Lisdat et al., arxiv:1511.07735 (2015) 10-15 10-16 10-17 10-18 10-19 1 st campaign 2 nd campaign link 1 10 100 1000 10000 100000 averaging time (s) 3 10-17 precision after 1000 s of averaging. 10 better 10,000 faster 30

total Allan deviation y ( ) First remote clock comparison Ch. Lisdat et al., arxiv:1511.07735 (2015) 10-15 10-16 10-17 10-18 10-19 1 st campaign 2 nd campaign link 1 10 100 1000 10000 100000 averaging time (s) 3 10-17 precision after 1000 s of averaging. 10 better 10,000 faster Uncertainty limited by clocks! Contribution uncertainty (in 10-17 ) systematic, Sr(OP) 4.1 systematic, Sr(PTB) 1.9 statistical 2 fs combs 0.1 link 0.03 gravity potential 0.4 total 5.0 31

total Allan deviation y ( ) Sr PTB / Sr SYRTE 1 First remote clock comparison Ch. Lisdat et al., arxiv:1511.07735 (2015) 10-15 4 10 15 0 4 10 15 10-16 2 10 16 10-17 1 10 16 10-18 10-19 1 st campaign 2 nd campaign link 1 10 100 1000 10000 100000 averaging time (s) 3 10-17 precision after 1000 s of averaging. 10 better 10,000 faster 0 1 10 16 0.2 0.3 85 90 95 100 105 date of measurement (MJD 57092) Agreement within combined uncertainty of clocks (5 10-17 ). First comparison of remote clocks at the 10-17 -level! 32

total Allan deviation y ( ) excitation probability frequency shift (MOT - CF) / Hz Summary 0 Accuracy -1-2 11:00 14:00 17:00 20:00 time 1.0 Instability 0.8 0.6 0.4 0.2 0.0-3 -2-1 0 1 2 3 applied frequency (Hz) 10-15 Applications 10-16 10-17 10-18 More 10-19 1 10 100 1000 10000 100000 averaging time (s) 33

Thank you for your attention. Ali Al-Masoudi Physikalisch-Technische Bundesantalt Working Group 4.32 Optical Lattice Clocks Bundesallee 100 D-38116 Braunschweig Germany phone: +49 531 592-4325 e-mail: ali.al-masoudi@ptb.de web: www.ptb.de 34