UNIT-05 VECTORS. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar.

Similar documents
Chapter 2 A Mathematical Toolbox

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3

Physics 12. Chapter 1: Vector Analysis in Two Dimensions

MECHANICS. Prepared by Engr. John Paul Timola

Kinematics in Two Dimensions; Vectors

SECTION 6.3: VECTORS IN THE PLANE

4/13/2015. I. Vectors and Scalars. II. Addition of Vectors Graphical Methods. a. Addition of Vectors Graphical Methods

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

Tenth Edition STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University

Vector components and motion

Physics 40 Chapter 3: Vectors

Notes: Vectors and Scalars

Chapter 8 Vectors and Scalars

Vectors. Introduction. Prof Dr Ahmet ATAÇ

Vectors and 2D Kinematics. AIT AP Physics C

2-9. The plate is subjected to the forces acting on members A and B as shown. If θ = 60 o, determine the magnitude of the resultant of these forces

Ishik University / Sulaimani Civil Engineering Department. Chapter -2-

(arrows denote positive direction)

Chapter 3 Kinematics in Two Dimensions; Vectors

Vectors. Introduction

Vector Algebra August 2013

9.1. Basic Concepts of Vectors. Introduction. Prerequisites. Learning Outcomes. Learning Style

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Chapter 3. Vectors. 3.1 Coordinate Systems 3.2 Vector and Scalar Quantities 3.3 Some Properties of Vectors 3.4 Components of a Vector and Unit Vectors

Unit 1 Representing and Operations with Vectors. Over the years you have come to accept various mathematical concepts or properties:

Coordinate Systems. Chapter 3. Cartesian Coordinate System. Polar Coordinate System

Engineering Mechanics: Statics in SI Units, 12e Force Vectors

FORCE TABLE INTRODUCTION

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Vector Addition and Subtraction: Graphical Methods

Mathematical review trigonometry vectors Motion in one dimension

Chapter 3. Vectors and Two-Dimensional Motion

Chapter 7.4: Vectors

Chapter 2 Mechanical Equilibrium

Mechanics: Scalars and Vectors

Introduction to Vectors

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors.

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole

Kinematics in Two Dimensions; 2D- Vectors

Chapter 3. Vectors and. Two-Dimensional Motion Vector vs. Scalar Review

Chapter 2 Statics of Particles. Resultant of Two Forces 8/28/2014. The effects of forces on particles:

ENT 151 STATICS. Statics of Particles. Contents. Resultant of Two Forces. Introduction

Welcome back to Physics 215

Scalar Quantities - express only magnitude ie. time, distance, speed

CHAPTER 1 MEASUREMENTS AND VECTORS

UNCORRECTED PAGE PROOFS

VECTORS. 3-1 What is Physics? 3-2 Vectors and Scalars CHAPTER

Vectors (Trigonometry Explanation)

11.8 Vectors Applications of Trigonometry

Projectile Motion and 2-D Dynamics

Engineering Mechanics: Statics in SI Units, 12e

Department of Physics, Korea University

Lecture Notes (Vectors)

Chapter 2: Statics of Particles

Vectors A Guideline For Motion

Chapter 3 Vectors. 3.1 Vector Analysis

Physics 170 Lecture 2. Phys 170 Lecture 2 1

Graphical Vector Addition

Chapter 3 Vectors Prof. Raymond Lee, revised

Please Visit us at:

2.1 Scalars and Vectors

scalar and - vector - - presentation SCALAR AND VECTOR

Adding Vectors in Two Dimensions

Section 1.4: Adding and Subtracting Linear and Perpendicular Vectors

Vector Addition INTRODUCTION THEORY

Chapter 3. Kinematics in Two Dimensions

6. Vectors. Given two points, P 0 = (x 0, y 0 ) and P 1 = (x 1, y 1 ), a vector can be drawn with its foot at P 0 and

UNIT V: Multi-Dimensional Kinematics and Dynamics Page 1

CHAPTER 2: VECTORS IN 3D

General Physics I, Spring Vectors

Vectors. In kinematics, the simplest concept is position, so let s begin with a position vector shown below:

OpenStax-CNX module: m Vectors. OpenStax College. Abstract

a Particle Forces the force. of action its sense is of application. Experimen demonstra forces ( P Resultant of Two Note: a) b) momentum)

9/29/2014. Chapter 3 Kinematics in Two Dimensions; Vectors. 3-1 Vectors and Scalars. Contents of Chapter Addition of Vectors Graphical Methods

BELLWORK feet

Lesson 7. Chapter 3: Two-Dimensional Kinematics COLLEGE PHYSICS VECTORS. Video Narrated by Jason Harlow, Physics Department, University of Toronto

Vectors in Physics. Topics to review:

The geometry of least squares

Vectors a vector is a quantity that has both a magnitude (size) and a direction

Review. Projectile motion is a vector. - Has magnitude and direction. When solving projectile motion problems, draw it out

Graphical Analysis; and Vectors

Introduction to Engineering Mechanics

Vectors Primer. M.C. Simani. July 7, 2007

What you will learn today

A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude A numerical value with units.

Engineering Mechanics Statics

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( )

AP Physics C Mechanics Vectors

Chapter 2: Force Vectors

Chapter 2 One-Dimensional Kinematics

**Answers may or may not be the same due to differences in values of original question. Answers in bold and figures are not provided.

Chapter 3. Vectors. θ that the vector forms with i ˆ is 15. I. Vectors and Scalars

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

two forces and moments Structural Math Physics for Structures Structural Math

5.) Unit Vectors (Mario s Math Tutoring)

Review of Coordinate Systems

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/c05/c2hlch... CHAPTER 5 MOMENTS 1 of 3 10-Sep-12 16:35

Transcription:

UNIT-05 VECTORS Introduction: physical quantity that can be specified by just a number the magnitude is known as a scalar. In everyday life you deal mostly with scalars such as time, temperature, length and mass of objects, etc. vector is a physical quantity that requires both a magnitude and a direction for its specification. simple example of a vector is the displacement a change of position in a given direction - of an object. nother example of a vector quantity is the velocity of an object, which is defined as the rate of change of displacement with time. Since many engineering situations require us to represent quantities in terms of magnitudes and directions, engineering students must acquire the ability to represent the appropriate quantities as vectors and be able to manipulate these vector quantities. Learning Objectives of this UNIT. 1. Understand the characteristics of a vector quantity. 2. The polar description: Represent a vector quantity in terms of its magnitude and direction, given a description of the physical situation. 3. Utilize the characteristics of two or more vectors that are concurrent, or collinear, or coplanar. 4. Learn to add similar vector quantities. e able to combine (add or subtract) two or more vectors into a single, resultant vector using the graphical tailto-tip and the parallelogram methods. 5. Resolve (break-up) a vector into components in specified directions. 6. The unit vector notation: Represent a vector in terms of its magnitude and a unit vectors in the principal directions of a given reference frame. Combine vector components into a resultant vector, giving magnitude and direction in terms of orthogonal unit vectors in the reference frame. Representation of a vector: vector quantity is written as a letter with an arrow on top,!. In printed material it becomes cumbersome to type an arrow and therefore, purely as a matter of convenience, vectors are represented by bold-type letters i.e. where is the magnitude of. Graphically a vector is represented by a straight line drawn to a scale with the length representing the magnitude and the arrow giving the direction of. In Figure 1 below, the vector represents a displacement of 10.0 m 1

along the x-axis where a scale of 1.0cm represents a displacement of 5.0m. The scaling factor in representing vectors is arbitrary and is dictated largely by convenience and spatial constraints. Y 2.0 cm o X FIGURE 1. Graphical representation of a vector. ddition of Vectors Graphical Methods Only similar vectors (vectors representing the same physical quantity can be added Velocity to velocity, force to force and so on) can be added. The Tail-to-Tip Method: To add two vectors and, place the tail of the second vector () at the head of the first vector (). third vector let us say C drawn from the tail of the first () to the head of the second () gives the sum of the two vectors and. Graphically, the sum of two vectors is C = +. C =+ h α β d FIGURE 2. dding two vectors using the tail-to-tip method. Notes: 1. You can convince yourself that C = + = + 2. The sum of two vectors is also a vector. The magnitude of C can be calculated as follows: From the Pythagorean theorem: C 2 = h 2 + (+d) 2 = h 2 + 2 +d 2 + 2d substitute, d = cosβ and h 2 + d 2 = 2 in the above equation to get C 2 = 2 + 2 + 2cosβ = 2 + 2 + 2cos (180-α) = 2 + 2 2cosα C = ( 2 + 2 2cos α) 1/2 [1] 2

We identify C as the sum of vectors and or alternately we can also identify and as component vectors of C. y a similar argument, we see that d is the component of along the direction of whereas h is the component of along a direction perpendicular to. When the two vectors and are at right angles, α = 90 0, we get C = ( 2 + 2 2cos 90 0 ) 1/2 = ( 2 + 2 ) 1/2...[2] (Note from eqs.[1] and [2] that the magnitude of the resultant vector C! +. When and are collinear, C = +, and C = when and are antiparallel) To add more than two vectors we simply extend the tail over tip method. In Figure 3 below we have added three vectors, and D to get E = + + D = C + D. D E = C+D C =+ FIGURE 3. dding three vectors,, and D using the tip-to-tail method. The Parallelogram Method: This method is different in appearance but is fully equivalent to the tail-to-tip method. In this method you put the tails of the two vectors together, complete a parallelogram as shown below. The diagonal of the parallelogram is then the resultant of the two vectors. In the figure below we have added and to obtain C = +. C =+ FIGURE 4. dding two vectors and using the parallelogram method. Subtraction of Vectors and Multiplication by a Scalar: 3

The subtraction of a vector from can be viewed as adding to a direction-reversed. D = = + (- ) [3] Graphically, eq.[3] is illustrated below for the tip-to-tail method: C =+ D - FIGURE 5. Subtracting vectors from vector using the parallelogram method. Exercise 1: In the diagram below, which of the following vectors does X represent? [a] [b] [c] [ + ] X Multiplication by a Scalar: Using the tail-to-tip method, it follows that + = 2. Thus, multiplying a vector by a number simply increases the magnitude of the vector by a factor equal to the number but leaves the direction of the vector unchanged. Similarly, - 2 = 2(- ). Therefore, multiplying a vector by a negative number reverses the direction of the vector and increases the magnitude of the vector by a factor equal to the number modulus. In the example above, 2 is parallel to. In general, if = n, where n is a number, then and are parallel to each other with = n. When n = 1, then =, and =. This means that two parallel 2-2 4

vectors of the same magnitude are identical, i.e., they are the same vector. Rectangular Components of a Vector If is along x-axis and is along y-axis one can add them to get C = +. We call and as rectangular component vectors of C. See figure below. y C! x FIGURE 6. The rectangular components of a vector in the diagram and are, respectively, the x- and y-components of vector C. From the definition of the sine and cosine functions, /C = cosθ and /C = sinθ Therefore, = C cosθ and =C sinθ [4] = C cosθ along x-axis is also called the x-component of C (= C x ). Similarly, = C sinθ is called the y-component of C, and written as C y. Magnitude of C can be obtained from its rectangular components as follows: C x 2 + C y 2 = C 2 [cos 2 θ + sin 2 θ]= C 2, since cos 2 θ + sin 2 =1 Therefore, C = (C x 2 + C y 2 ) 1/2 The direction of C is given by θ, the angle between C and the x-axis. We see that C y / C x = C sinθ / C cosθ = tanθ θ = tan -1 [C y / C x ] 5

Thus, if we know the rectangular components C x and C y of a vector C, we can determine the magnitude C = (C x 2 + C y 2 ) 1/2 and direction from θ = tan -1 (C y / C x ). Y C =+ y x y C y x C x X FIGURE 7. In the diagram C = +. Notice that C x = x + x and C y = y + y. The method of adding two vectors depicted in Fig. 7 can be extended to adding more than two vectors. When adding many similar vectors, say,, C we can resolve each vector into its rectangular components (x- and y- components) and add all the x- components as scalars to find the resultant x-component (R x = x + x + C x +.) and add all the y-components to find the resultant y-component (R y = y + y + C y ). Once we know these resultant x- and y-components, we can get the magnitude of the resultant vector R = (R x 2 + R y 2 ) 1/2 and its direction from tanθ = (R y / R x ). Unit Vector Representation: So far we have been representing vectors graphically we have been drawing them. Vectors can also be expressed algebraically or analytically we can express them in the written form. convenient way to do this is by using the concept of the unit vectors. unit vector is defined as a vector of magnitude one (1). We define unit vectors that point along the three axes of a rectangular co-ordinate system. Z i k j Y X FIGURE 8.The unit vectors. 6

The unit vectors along the x-, y-, and z-axis are, respectively, called the i, j, and k. (Note: we will mostly work with two-dimensional vectors in the x-y plane and hence deal with only the i and j unit vectors. In the print form the three unit vectors are written as î, ĵ, and ˆk and are read as i-cap, j-cap, and k-cap. In the typewritten format the unit vectors are written in lower case bold type.) Thus, C = C x i + C y j. In this representation, we can identify the components C x and C y and the direction directly from the equation itself. For example, a displacement vector d = (10.0 i + 12.0 j) m implies it has an x-component of 10.0 m and a y-component of magnitude 12.0 m. (Note: when you specify a vector in terms of its magnitude and orientation, it is called the polar description of a vector. When you describe a vector in terms of its components, it s called the rectangular-component description. The unit vector notation or the (i,j,k)-notation is a rectangular-components description of a vector). Exercise 2. displacement vector in the xy plane is 25.0m long and directed at angle θ =30 o as shown. Determine the x- and y-components of and express in the unit vector notation. Solution: x = cos30 o = 25.0x0.87 = 21.6m y = sin30 o = 25.0x0.5 = 12.5m o y θ x y x = x i + y j = 21.6i + 12.5j Exercise 3. Find the magnitude and direction of = 45.0i + 60.0j Solution: = 45.0 2 + 60.0 2 = 75.0 60.0! = tan "1 # & $ % 45.0' ( = 53.1 0 Therefore, the magnitude of is 75.0 and it points 53.1 0 above the x-axis. dding Vectors Problem Solving Strategy Here is an outline of how to proceed when adding vectors. We will illustrate this with an example. Example: bus travels 250.0 m due east from the bus depot at O due east to station. From station, the bus proceeds to station travelling southeast (45 0 ) for 500.0 m and then to station C for a distance of 400.0m in a direction 53 0 south of west. What is the net displacement of the bus? 7

Step 1. Choose x- and y-axes. Choose them in a way that will make your work easier. This is often done by choosing one of the axes along one of the given vectors. In our case we have aligned the first leg of the bus s journey along the x-axis. Draw a welllabeled diagram(see the diagram on the left below). y y 0 D 1 45 o x 0 D 1 θ D 2x 45 o x D 2 D 2 D 2y D 53 o D D 3x 53 o D 3y D 3 D 3 C C Step 2. Find the components. Resolve each component into its x- and y-components (see the diagram on the right above). D 1x = 250.0 m D 1y = 0.0 m D 2x = 500.0 cos45 0 m = 353.6 m D 2y = - 500.0 sin45 0 m = - 353.6 m D 3x = - 400.0 cos53 0 m = - 240.7 m D 2y = - 400.0 sin53 0 m = - 319.5 m Step 3. dd the components. D x = D 1x + D 2x + D 3x = 250.0 + 353.6 240.7 = 362.9 m D y = D 1y + D 2y + D 3y = 0.0 353.6 319.5 = - 673.1 m Step 4. Find the magnitude and direction. 8

D = 362.9 2 + 673.1 2 = 764.7m # D! = tan "1 y & $ % ' ( = # "673.1& tan"1 $ % 362.7 ' ( = "61.7 0 D x Thus the total displacement of the bus is 764.7 m and it points 61.7 0 below the x-axis. Note : In the unit vector notation, the solution to this problem would be written as follows: D 1 = 250.0 i m D 2 = 500.0 cos45 0 i - 500.0 sin45 0 j = 353.6 i - 353.6j m D 3 = - 400.0 cos53 0 i - 400.0 sin53 0 j = - 240.7 i - 319.5j m The net displacement: D = D 1 + D 2 + D 3 = (250.0 + 353.6 240.7)i + (0.0 353.6 319.5)j = 362.9i - 673.1j m The magnitude and direction can now be determined as outlined above. 9

12.0 km Solved Examples: Example 1. vector in the xy plane is 25.0m in magnitude and directed at angle θ =30 o as shown. nother vector is 30.0m in magnitude and perpendicular to. [a] What are the x- and y-components of the resultant R = +? [b] Determine the magnitude and direction of the resultant vector R. Solution: [a] x = cos30 o = 25.0x0.866 = 21.6m y y = sin30 o = 25.0x0.5 = 12.5m x = - sin30 o = - 30.0x0.5 = - 15.0m θ y = cos30 o = 30.0x0.866 = 25.98m R x = x + x = (21.6-15.0)m = 6.6m o θ x R y = y + y = (12.5 + 25.98)m = 38.5m [b] Magnitude, R = 6.6 2 + 38.5 2 = 39.1m! = tan "1 (38.5 / 6.6) = 80.3 o Thus the resultant is 39.1m and points 80.3 0 above the x-axis. Example 2. fishing boat sets out to sail to a point 12.0km due north. Without catching many fish, the boat sails further to a point 9.0km due west for better fishing. From the second spot, how far and in which direction must the boat sail to reach its original starting point? Solution: To get back to O, the boat must travel along C. From the diagram: + + C = 0 or C = - ( + ) = - ( 12.0 i - 9.0 j) km Magnitude of C = [(12.0) 2 + (9.0) 2 ] 1/2 = 15.0 km. θ = - tan -1 [9.0/12.0] = - 37 o 9.0 km θ C y(north) o x(east) 10

Thus the boat must sail 15.0 km, 37 o south of east. Example 3. Loosening a nut on a bolt is a common experience and we see how a force applied may be split into various components. In order to loosen a nut, a person holding a horizontal wrench exerts a downward force F = 50.0 lb at an angle of 30 to the vertical. [a] What are the horizontal and vertical components of the force F? The vertical component, F V = 50.0 cos 30 = 43.3 lb The horizontal component, F H = 50.0 sin 30 = 25.0 lb Negative signs indicate the components are along the negative x- and y-axes. [b] Express F in the unit vector i and j notation. F = F H i + F V j = [ 43.3 i 25.0 j ] lb Example 4: In the first leg of its flight an airplane flies from city to city in a direction due east for 600.0 mi (mi = miles). Next, it flies from city to city C, in a direction 53 north of east for 500.0 mi. D C N W S E 500 miles 53 o 600 miles [a] Determine the components, along the easterly and northerly directions, of the resultant displacement of the plane from city to city C. Let d x and d y represent, respectively, the components of the plane s displacement along the east and the north. 11

d x = 600.0 + 500.0 (cos53 ) mi = 900.0 mi. d y = 500.0 (sin 53 ) mi = 400.0 mi [b] What are the magnitude and direction of the resultant displacement of the plane from city to city C? Magnitude: d = (900.0 2 + 400.0 2 ) 1/2 = 984.9 miles Direction: tan θ = 400.0/900.0 = 4/9, so θ = tan -1 (4/9) = 24.0. This direction is 24.0 North of East. The plane then flies directly from city C to city D directly north of city, a distance of 400.0 miles in the last segment of its flight. [c] What is the magnitude and the direction of the displacement of the plane from city C to city D? Magnitude = 900.0 miles. This direction is westerly; see the vector representation below. D d 3 = 900 miles C 29 o o d f = 400 miles d = 985 miles d 2 = 500 miles 24 o d 1 = 600 miles 53 o COMPONENT DUE EST [d] What is the net displacement of the plane as it flies from city to city D? The net displacement, R = 400.0 i mi or 400.0 mi pointing north. [e] What is the total distance the plane has traveled as it flew from to D. The total distance = 600.0 + 500.0 + 900.0 = 2000.0 mi 12

Example 5. disabled automobile is pulled to the right by means of two cables and C as shown. The tension in the cable C is T C = 6.0 kn. If it has to be pulled along the direction X, the axis of the automobile, determine the magnitude of the resultant force, R, in that direction and the tension, T, in cable. Solution: R = T + T C In the x-direction: R x = T C (cos 30 ) + T (cos 37 ) [1] In the y-direction: 0 = T sin 37 - T sin 30 [2] From eq.[2]: T = 6000(sin 30 ) /0.6 = 5000 N. From eq.[1]: R x = T C (cos 30 ) + T (cos 37 )= (6000 N )(0.866)+(5000 N)(0.8)= 9200 N. 13