CEE 772 Lecture #27 12/10/2014. CEE 772: Instrumental Methods in Environmental Analysis

Similar documents
CEE 772: Instrumental Methods in Environmental Analysis

Chemistry Instrumental Analysis Lecture 35. Chem 4631

Mass Spectrometry. What is Mass Spectrometry?

Mass Analyzers. mass measurement accuracy/reproducibility. % of ions allowed through the analyzer. Highest m/z that can be analyzed

(Refer Slide Time 00:09) (Refer Slide Time 00:13)

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein.

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps

Lecture 8: Mass Spectrometry

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Lecture 8: Mass Spectrometry

Harris: Quantitative Chemical Analysis, Eight Edition

Mass Analyzers. Ion Trap, FTICR, Orbitrap. CU- Boulder CHEM 5181: Mass Spectrometry & Chromatography. Prof. Jose-Luis Jimenez

Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University

MS Goals and Applications. MS Goals and Applications

Mass Spectrometry in MCAL

TANDEM MASS SPECTROSCOPY

MS Goals and Applications. MS Goals and Applications

Types of Analyzers: Quadrupole: mass filter -part1

Mass Spectroscopy. Base peak. Molecular Ion peak. The positively charged fragments produced are separated, based on their mass/charge (m/z) ratio. M+.

ICPMS Doherty Lecture 1

GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 2

LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC

Time-of-Flight Mass Analyzers

LC-MS Based Metabolomics

This is the total charge on an ion divided by the elementary charge (e).

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS

MS/MS .LQGVRI0606([SHULPHQWV

LECTURE-11. Hybrid MS Configurations HANDOUT. As discussed in our previous lecture, mass spectrometry is by far the most versatile

Introduction to the Q Trap LC/MS/MS System

Chemistry 311: Topic 3 - Mass Spectrometry

Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap

Mass spectrometry.

CEE 772: Instrumental Methods in Environmental Analysis

Secondary Ion Mass Spectroscopy (SIMS)

CHAPTER D3 TOF ION OPTICS

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS)

Magnetic Fields & Forces

History of Mass spectroscopy. Mass Spectroscopy. Introduction... Uses of Mass Spec. Where are Mass Spectrometers Used? Mass Spectroscopy Units

Introduction to GC/MS

Magnetic Fields & Forces

Analysis of Polar Metabolites using Mass Spectrometry

Chem 550, Spring, 2012 Part I: OVERVIEW OF MASS SPECTROMETRY:

Courtesy of ESS and TheRGA web pages part of a series of application and theory notes for public use which are provided free of charge by ESS.

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS

1. The range of frequencies that a measurement is sensitive to is called the frequency

Ion trap. 3D Quadrupole Trap. -Mass spectrometer -Ion trap (Quadrupol Ion Storage, Quistor) 18. April

PARTICLE ACCELERATORS

Molecular Mass Spectrometry

Molecular Mass Spectrometry

Force Due to Magnetic Field You will use

Introduction to LC-MS

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Autoresonant Ion Trap Mass Spectrometer The RGA Alternative

Section 4 : Accelerators

Ion traps. Quadrupole (3D) traps. Linear traps

Mass Analysers for LC MS

The Aerosol Ion Trap Mass Spectrometer (AIMS): Instrument development and first experimental results

Mass Spectrometry. Fundamental LC-MS. Mass Analysers

Gravitational Fields Review

MASS SPECTROMETRY. Topics

Tendenze nell innovazione della strumentazione in spettrometria di massa:

Translational Biomarker Core

Quattro Micro - How does it work?

Mass spectrometry of proteins, peptides and other analytes: principles and principal methods. Matt Renfrow January 11, 2008

Mass spectrometry gas phase transfer and instrumentation

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

1. Draw in the magnetic field inside each box that would be capable of deflecting the particle along the path shown in each diagram.

Interface (backside) & Extraction Lens

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis

Today s lecture: Motion in a Uniform Magnetic Field continued Force on a Current Carrying Conductor Introduction to the Biot-Savart Law

Mass spectrometry: forming ions, to identifying proteins and their modifications Stephen Barnes, PhD

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced

Lecture 22 Ion Beam Techniques

Skoog/Holler/Crouch Chapter 19 Principles of Instrumental Analysis, 6th ed. CHAPTER 19

Mass spectrometry: forming ions, to identifying proteins and their modifications Stephen Barnes, PhD

CURRENT-CARRYING CONDUCTORS / MOVING CHARGES / CHARGED PARTICLES IN CIRCULAR ORBITS

1 Mass Analysis. Gene Hart-Smith and Stephen J. Blanksby

Screening of pesticides residues by the time of flight analyzer (ToF) : Myth or reality?

Chapter test: Probing the Heart of Matter

Basics of Mass Spectrometry

Atomic masses. Atomic masses of elements. Atomic masses of isotopes. Nominal and exact atomic masses. Example: CO, N 2 ja C 2 H 4

Proudly serving laboratories worldwide since 1979 CALL for Refurbished & Certified Lab Equipment

Principles of Quadrupole and Ion Trap Mass Analyzers

Chemistry Instrumental Analysis Lecture 37. Chem 4631

Accelerators Ideal Case

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Homework 2: Forces on Charged Particles

3. Particle accelerators

M M e M M H M M H. Ion Sources

The Measurement of e/m

Electromagnetism Notes 1 Magnetic Fields

Lecture 15: Introduction to mass spectrometry-i

Introduction to Elemental Analysis

AQA Chemistry A-Level : Atomic Structure

1) Introduction. 2) Types of Mass Analyzers - Overview. Assigned Reading: Nier mass spectrometry paper Extra Reading:

Particle physics experiments

Secondary Ion Mass Spectrometry (SIMS)

Mass Spectrometry for Chemists and Biochemists

Transcription:

Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #21 Mass Spectrometry: Mass Filters & Spectrometers (Skoog, Chapt. 20, pp.511 524) (Harris, Chapt. 24&25) (699-706; 742-749) David Reckhow CEE 772 #21 1 MS Mass Analyzers Mass analyzers are analogous to optical monochromator Two main properties of mass analyzers Able to distinguish between very small mass difference Allow a sufficient number of ions to pass through to give readily measurable ion currents These two properties are not entirely compatible There is no ideal mass analyzer David Reckhow CEE 772 #21 2 1

Parameters to Describe Mass Analyzers Resolution describe the ability of a mass analyzer to separate adjacent ions. Mass accuracy is the ability of a mass analyzer to assign the mass of an ion close to its true mass. Mass range is usually defined by the lower and upper m/z value observed by a mass analyzer. Sensitivity is the ability a particular instrument to respond to a given amount of analyte. Scan speed is the rate at which we can acquire a mass spectrum, generally given in mass units per unit time. Tandem mass spectrometry (MS/MS; or MS n, n=1,2,3 )provides the ability to mass-analyze sample components sequentially in time or space to improve selectivity of the analyzer or promote fragmentation and facilitate structural elucidation. David Reckhow CEE 772 #21 3 Types of MS 4 Types commonly used in environmental analysis Magnetic Sector MS Quadrupole MS Ion trap MS Time of Flight MS Others Fourier Transform Ion Cyclotron Resonance MS (FT ICR) David Reckhow CEE 772 #21 4 2

Summary of Mass analyzers Resolution Quadrupole Low Ion trap Low, can operate higher Time-of- Flight Moderate - high Magnetic Sector Moderate- High Mass Range 4,000 u/sec Scan Speed 4,000 u/sec max Very Fast Slow Vacuum Requirement Common LC/MS interfaces Fourier Transform High (up to 500,000) 50-2,000 u 2,000 u Unlimited 20,000u >15,000u Minimal: 10-4 10-5 Low: 10-3 torr ES, APCI, PB, TS ES, APCI High: 10-7 torr or higher ES, APCI High: 10-7 torr ES, APCI, PB, TS, CFFAB Fast (1 millisecond) High ES, APCI David Reckhow CEE 772 #21 5 MS Magnetic Sector The cations from the ion source are passed through a magnet that is located outside the tube The magnetic force deflects the ions toward the detector at the end of the tube Lighter ions are deflected too much and heavier ions are deflected too little Only ions that match the small mass range reach the detector A 10 7 vacuum is applied to the metal analyzer tube David Reckhow CEE 772 #21 6 3

Inside a Mass Spectrometer David Reckhow CEE 772 #21 7 Magnetic Sector Mass Spectrometry THEORY: The ion source and repeller plate accelerates ions to a kinetic energy given by: KE = ½ mv 2 = zv Where m is the mass of the ion, v is its velocity, z is the charge on the ion, and V is the applied voltage of the ion optics. David Reckhow CEE 772 #21 8 4

Magnetic Sector Mass Spectrometry The ions enter the flight tube and are deflected by the magnetic field, B. Only ions of mass-to-charge ratio that have equal centripetal and centrifugal forces pass through the flight tube: mv 2 /r = BzV, where r is the radius of curvature David Reckhow CEE 772 #21 9 Magnetic Sector Mass Spectrometry mv 2 /r = BzV By rearranging the equation and eliminating the velocity term using the previous equations, r = mv/zb = 1/B(2Vm/z) 1/2 Therefore, m/z = B 2 r 2 /(2V) This equation shows that the m/z ratio of the ions that reach the detector can be varied by changing either the magnetic field (B) or the applied voltage of the ion optics (V). David Reckhow CEE 772 #21 10 5

Magnetic Sector Mass Spectrometry In summary, by varying the voltage or magnetic field of the magnetic-sector analyzer, the individual ion beams are separated spatially and each has a unique radius of curvature according to its mass/charge ratio. m z = B 2 r 2 2V M = mass of ion z = charge of ion V = voltage B = magnetic field r = radius of circle David Reckhow CEE 772 #21 11 Magnetic Sector Analyzer David Reckhow CEE 772 #21 12 6

Sector Mass Analyzers B: magnetic field strength Ions created in the ion source are accelerated with voltages of 4-8kV into the analyzer magnetic field. The radius of curvature in a given magnetic field of the sector is a function of m/z. By varying either the magnetic field(b) or the accelerating voltage(v), ions of different m/z are separated. David Reckhow CEE 772 #21 13 Magnetic Sector MS From: Harris, 2000 David Reckhow CEE 772 #21 14 7

MS Quadrupole Most common mass analyzer in use since the 1950s Quadrupole MS are smaller, cheaper and more rugged than magnetic sectors Low scan times (<100 ms) ideal for GC or LC inlets Called mass filters rather than mass analyzers ions of only a single mass to charge (m/q) ratio pass through the apparatus separate ions based on oscillations in an electric field (the quadrupole field) using AC and DC currents David Reckhow CEE 772 #21 15 Quads and LC tolerant of relatively poor vacuums (~5 x 10 5torr) makes them well suited to electrospray ionization (because these ions are produced under atmospheric conditions) quadrupoles are now capable of routinely analyzing up to a m/q ratio of 3000 useful in electrospray ionization of biomolecules, which commonly produces a charge distribution below m/z 3000 David Reckhow CEE 772 #21 16 8

Basis of Quadrupole Mass Filter consists of 4 parallel metal rods, or electrodes The ions are accelerated by a potential of 5 15 V and injected into the area between the 4 rods opposite electrodes have potentials of the same sign one set of opposite electrodes has applied potential of [U+Vcos(ωt)] other set has potential of [U+Vcosωt] U= DC voltage, V=AC voltage, ω= angular velocity of alternating voltage David Reckhow CEE 772 #21 17 Operation of Quadrupole Mass Filter voltages applied to electrodes affect trajectory of ions with the m/q ratio of interest as they travel down the center of the four rods these ions pass through the electrode system ions with other m/z ratios are thrown out of their original path these ions are filtered out or lost to the walls of the quadrupole, and then ejected as waste by a vacuum system in this manner the ions of interest David are Reckhow separated CEE 772 #21 18 9

Schematic of Quadrupole Hardy, U of Akron David Reckhow CEE 772 #21 19 schematics Quadrupole From: Harris, 2000 David Reckhow CEE 772 #21 20 10

Quadrupole Mass Analyzer (Q) dc: direct current ac: alternating current or radio frequency A continuous beam of ions enters one end of of this assembly and exits the opposite end to be detected by a high voltage detector. Ions are filtered on the basis of their mass-tocharge ratio(see equation 1). Ions below and above a certain m/z value will be filtered out of the beam depending on the ratio of the dc and ac voltages By ramping the voltages on each set of poles, a complete range of masses can be passed to the detector. David Reckhow CEE 772 #21 21 Miller & Denton, 1986; J. Chem. Ed. 63(7)617 622 David Reckhow CEE 772 #21 22 11

Quadrupole operation Plot of DC and RF voltages applied to the rods David Reckhow CEE 772 #21 23 Ion Trap Mass Analyzer (IT) The ion trap is a variation of the quadrupole mass filter, and consequently is sometimes refer to as a Quadrupole Ion Trap. The trap contains ions in a 3-dimensional volume rather than along the center axis. Helium gas is added to the trap causing the ions to migrate toward the center. After trapping, the ions are detected by placing them in unstable orbits, causing them to leave the trap. David Reckhow CEE 772 #21 24 12

Ion trap Analyzers Ion trap analyzer forms positive or negative ions and holds them for a long period of time by electric and/or magnetic fields. It can be used as a detector for GS/MS It is cheap, more compact and more rugged then magnetic sector and quadrupole David Reckhow CEE 772 #21 25 Ion trap Analyzers Consisted of ring electrode and a pair of end cap electrodes Radio frequency voltage is applied and varied to the ring electrode As radio frequency voltage increases, heavier ions stabilize and lighter ions destabilized and then collide with the ring wall David Reckhow CEE 772 #21 26 13

GC/MS Ion Trap David Reckhow CEE 772 #21 27 Ion Trap MS/MS Slide David courtesy Reckhowof Meyer et al., USGS CEE 772 #21 28 14

Ion Trap From: Harris, 2000 David Reckhow CEE 772 #21 29 Detector Ion detection system Conversion dynode Electron multiplier David Reckhow CEE 772 #21 30 15

Time of flight MS Lighter ions are subject to greater acceleration David Reckhow CEE 772 #21 From: Harris, 2000 31 David Reckhow CEE 772 #21 32 16

How Q TOF Works Unique Feature is High Resolution of Fragment Ions Slide David courtesy Reckhowof Meyer et al., USGS CEE 772 #21 33 Reflectron David Reckhow CEE 772 #21 34 17

Time of Flight Mass Spectrometry Ionization: positive ions are produced periodically by bombardment of the sample with brief pulses of electrons, secondary ions, or in cases laser generated photons. Laser pulses typically have a frequency of 10 to 50 khz and a lifetime of 0.25 s. Acceleration: The ions are then accelerated by an electric field pulse of 10 3 to 10 4 V (the pusher ) that has the same frequency as, but lags behind, the ionization pulse 33 s for the GC TOF, resulting in 30,000 spectra per second (30 khz) Drift: The accelerated particles then pass into a field free drift tube. The drift tube s length can range from 0.5 3.0 meters David Reckhow CEE 772 #21 35 Time of Flight Mass Spectrometry An electric field accelerates all ions into a field free drift region with a kinetic energy of zv, where z is the ion charge and V is the applied voltage. Since the ion kinetic energy is 0.5mv 2, lighter ions have a higher velocity than heavier ions and reach the detector at the end of the drift region sooner Kinetic energy K.E. = zv = 1/2 mv 2 Solving for velocity (v) v = (2zV/m) 1/2 The transit time (t) through the drift tube is L/v where L is the length of the drift tube (usually 1 3 meters). t=l / (2V/m/z) 1/2 1/2 1/ 2 1 m L t = z 2V Note that the voltage (V) is sometimes expressed as the product of an extraction pulse potential (E) and the distance over which it is applied (s), giving V=eEs David Reckhow CEE 772 #21 36 18

Time-of-Flight Analyzer (TOF) Ion velocity is mass dependent. A bundle of ions from the ion source region are pulsed down the flight tube. Small mass ions have higher velocity relative to large to large mass ions. The arrival time is directly related to m/z. In this drawing the drift tube length is D instead of L David Reckhow CEE 772 #21 37 Fourier Transform-MS (FTMS) FTMS consists of a cell contained within a high vacuum chamber centered in a very high magnetic field. Ions are trapped in the cell by a combination of a magnetic field and electric potentials. Ions will take on circular trajectories about the axis of the magnetic field. The frequency of rotation of ions is inversely proportional to mass. The frequency of ion rotation is detected indirectly through induced current on the detector plates as the ions pass near the plates. The frequency of ion rotation can be converted to mass through a fourier transform. David Reckhow CEE 772 #21 38 19

Quadrupole MS/MS David Reckhow CEE 772 #21 39 To next lecture David Reckhow CEE 772 #21 40 20