Selected features of the Precambrian rocks of the eastern Beartooth Mountains, Montana and Wyoming

Similar documents
CHAPTER VI CONCLUSIONS

2 Britain s oldest rocks: remnants of

Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6

"When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in

Appendix A2: Detailed description of all results

Metamorphic Petrology GLY 262 P-T-t paths

Follow this and additional works at: Part of the Earth Sciences Commons

Report of Activities 2003 Published by: Manitoba Industry, Economic Development and Mines Manitoba Geological Survey, 2003.

Archean Terranes. Archean Rocks. Southeastern Africa. West Greenland. Kaapvaal Craton. Ancient Gneiss Complex

Figure GS-25-1: General geology and domain subdivisions in northwestern Superior Province. 155

Introduction. Introduction. Chapter 7. Important Points: Metamorphism is driven by Earth s s internal heat

6 Exhumation of the Grampian

Introduction to Geology Spring 2008

Lisa Gaston NMT. Photo courtesy of Mike Williams. Matt Heizler

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition

METAMORPHISM OF PRECAMBRIAN ROCKS IN THE SOUTHERN HIGHLAND MOUNTAINS, SOUTHWESTERN MONTANA

Understanding Earth Fifth Edition

GEOL Introductory Geology: Exploring Planet Earth Fall 2010 Test #2 October 18, 2010

Exploring in the last frontier: Skarn mineralisation, Attunga District, NSW

GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli

Mist Mis y Lake y Lak Mapping Progr ogr

AN ABSTRACT OF THE THESIS OF William Robert McCulloch for. the Master of Science in Geology presented June 10, 1988

GEOLOGICAL INVESTIGATION IN THE ISLAND LAKE GREENSTONE BELT, NORTHWESTERN SUPERIOR PROVINCE, MANITOBA (PARTS OF NTS 53E/15 & 16) GS-18

GEOLOGY OF THAILAND (METAMORPHIC ROCKS)

Lecture 10 Constructing the geological timescale

U-Pb zircon geochronology, Hf isotope, latest Neoarchean, magmatic event, Douling Complex, Yangtze craton

LOW GRADE PRECAMBRIAN ROCKS OF THE CENTRAL GRAVELLY RANGE, SW MONTANA

Appendix 11. Geology. of the. I60 area

IMSG Post-conference Field Guide

Topics that will be discussed

Chapter 4 Rocks & Igneous Rocks

Metamorphic Facies. Fig Temperaturepressure

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Metamorphism (means changed form

16. Metamorphic Rocks II (p )

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Metamorphic history of Nuvvuagittuq greenstone belt, Northeastern Superior Province, Northern Quebec, Canada

Metamorphic Petrology GLY 262 Metamorphic fluids

Rb-Sr Ages Of Precambrian Mafic Dikes, Bighorn Mountains, Wyoming

Precambrian geology of Lake Plateau, Beartooth Mountains, Montana by Douglas P Richmond

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GEOL360 Topics 9 and 10 : Igneous & metamorphic geochemistry

GY 112 Lecture Notes Archean Geology

Review - Unit 2 - Rocks and Minerals

GEOLOGY AND GEOCHRONOLOGY OF THE ISLAND LAKE GREENSTONE BELT, NORTHWESTERN SUPERIOR PROVINCE by J. Parks 1, S. Lin 1, M.T. Corkery and D.W.

Features. Departments

Precambrian rocks of Red River Wheeler Peak area, New Mexico

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting.

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks?

2812 *address correspondence to: File DR1: Detailed description of U-Pb and Hf-isotope results from each sample

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Practice Test Rocks and Minerals. Name. Page 1

AN OXYGEN ISOTOPE STUDY ON THE ORIGINS OF GARNET IN THE PERALUMINOUS SOUTH MOUNTAIN BATHOLITH, NOVA SCOTIA

Lecture 14: A brief review

DATA REPOSITORY ITEM: METAMORPHIC-AGE DATA AND TEXTURES

UNFOLDING THE TECTONIC HISTORY OF JOSHUA TREE NATIONAL PARK: A STRUCTURAL AND PETROLOGIC ANALYSIS OF THE JOHNNY LANG CANYON REGION

Metamorphism: Alteration of Rocks by Temperature and Pressure

Metamorphic Rocks. Metamorphic rocks. Formed by heat, pressure and fluid activity

CHAPTER 3.3: METAMORPHIC ROCKS

GEOLOGIC EVENTS SEDIMENTARY ROCKS FAULTING FOLDING TILTING

GY111 Earth Materials Practice Final Exam

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure

New geologic mapping + and associated economic potential on northern Hall Peninsula, Baffin Island, Nunavut

Lin Chen Robert A Creaser Daniel J Kontak Oct 29th, 2014

Evolution of the Slave Province and Abitibi Subprovince Based on U-Pb Dating and Hf Isotopic Composition of Zircon

GEOLOGIC TIME. Smith and Pun, Chapter 7 DETERMINING THE ORDER OF EVENTS

Crystalline rocks in the Patterson Lake corridor: implications for uranium deposit genetic models. Colin D. Card

GEOLOGY 285: INTRO. PETROLOGY

Follow this and additional works at: Part of the Earth Sciences Commons

predictive iscovery Why is the gold where it is? redictive mineral ineral discovery pmd CRC

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

Chapter 3 Time and Geology

RR#7 - Multiple Choice

PETROGENESIS OF ENCLAVES WITHIN THE PEGGY S COVE MONZOGRANITE, SOUTHERN NOVA SCOTIA, CANADA

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault.

Tectonic Framework of New York State

Evaluating the Intrusion-Related Model for the Archean Low-Grade, High- Tonnage Côté Gold Au(-Cu) Deposit

GY111 Earth Materials Practice Final Exam

Earth Science - Lab #11 Geologic Time

Metamorphic Petrology. Jen Parks ESC 310, x6999

Classification and Origin of Granites. A Multi-faceted Question

Imagine the first rock and the cycles that it has been through.

Magmatism in Western Cascades Arc. Early Tertiary Magmatism Part II. Washington Magmatism. Western Oregon. Southern Oregon

Regional geology of study areas 3

Iowa s Precambrian and Cambrian. University of Northern Iowa Dr. Chad Heinzel

Metamorphism and Metamorphic Rocks

Block: Igneous Rocks. From this list, select the terms which answer the following questions.

Metamorphic Evolution of Precambrian Rocks in the Southern Highland Mountains, Montana, and Implications for Proterozoic Tectonics

Archean geology of the Spanish Peaks area, southwestern Montana

Metamorphic fluids, Naxos, Greece

GEOCHRONOLOGIC AND PETROLOGIC CONTEXT FOR DEEP CRUSTAL METAMORPHIC CORE COMPLEX DEVELOPMENT, EAST HUMBOLDT RANGE, NEVADA

Metamorphism / Metamorphic Rocks

Plate tectonics, rock cycle

Overview of 2016 regional bedrock mapping in the Tehery-Wager area, northwestern Hudson Bay, Nunavut

CHAPTER 8 SUMMARY AND CONCLUSIONS

Lecture 5 Sedimentary rocks Recap+ continued. and Metamorphic rocks!

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc.

Metamorphic Petrology GLY 262 Metamorphism and plate tectonics

Petrology Session 2. Metamorphism: Alteration of Rocks by Temperature and Pressure

Transcription:

Selected features of the Precambrian rocks of the eastern Beartooth Mountains, Montana and Wyoming Darrell Henry, Louisiana State University Dave Mogk, Montana State University General information about the Precambrian rocks of the Beartooth Mtns Archean rocks are exposed in the Wyoming Province in the cores of mountain ranges uplifted during the Laramide Orogeny (Fig. 1). Archean rocks in the eastern and central Beartooth Mountains, Bighorn Mountains, and samples from deep-drill cores in eastern Wyoming and Montana are dominantly Late Archean granitoids (2.7-2.9 Ga), members of the tonalite-trondhjemitegranodiorite suite, with inclusions of older supracrustal rocks preserved as tectonic slices or pendants in the younger magmatic rocks (Barker et al., 1979; Peterman, 1981; Henry et al., 1982; Mueller et al., 1985, 1998). The Archean rocks in the western part and to the west of the Beartooth Mountains include a high-grade gneiss terrane with varying abundances of metasedimentary rocks (Mogk and Henry, 1988; Mogk et al., 1990). The dominantly magmatic terrane Fig. 1. General outline map of the Wyoming Province and its sub-provinces showing major areas of exposure of Archean rocks (WGT, Wyoming greenstone province; BBMT, Beartooth-Bighorn magmatic zone; MMT, Montana metasedimentary province). Map of Mogk et al. (1992). in the eastern and central Beartooth Mountains, and the high-grade gneiss terrane to the west, are separated by a major discontinuity in the Archean basement marked by a mobile belt in the North Snowy Block, western Beartooth Mountains (Mogk et al., 1988a, 1990). The differences in ages and compositions of associated magmatic and metamorphic rocks provide the basis for subdividing the Wyoming Province into three sub-provinces (Fig. 1). The Beartooth Mountains have been divided into four geographically and geologically distinct domains: the main Beartooth massif, the North Snowy Block, the Stillwater Block, and the South Snowy Block (Fig. 2). A major project conducted by Arie Poldervaart and his students in the main Beartooth massif provided the first extensive field and petrologic studies (Eckelmann and Poldervaart, 1957; Spencer, 1959; Harris, 1959; Casella, 1964, 1969; Prinz, 1964; Butler, 1966, 1969; Larsen et al., 1966; Bentley, 1967; and Skinner et al., 1969). Their initial interpretation of this area called for granitization of a sequence of openly-folded supracrustal rocks. However, more recent petrologic, geochemical, and geochronological studies (e.g.

Mueller et al., 1985, 1998; Wooden et al., 1988) have demonstrated that the main Beartooth massif consists predominantly of voluminous Late Archean igneous granitoids (2.8-2.74 Ga) with inclusions of metasupracrustal rocks which exhibit wide ranges in composition, metamorphic grade, and isotopic age. The North Snowy Block was first described by Reid et al. (1975) and interpreted as having a complex structural evolution of the area involving up to 5 discrete metamorphic and deformational events. However, Mogk et al. (1988a) Fig. 2. Geographic and geologically-distinct blocks of the Archean rocks of the Beartooth Mountains. The abbreviated localities in the eastern portion of the map include Hellroaring Plateau (HP), Quad Creek (QC) and Long Lake (LL). demonstrated that this area is better interpreted as a collage of several allochthonous units. The Stillwater Block is dominated by the mafic igneous layered Stillwater Complex (2.7 Ga) and its contact aureole in older metasediments (e.g. Czamanske and Zientek, 1985). The South Snowy Block is dominated by metasedimentary rocks and a series of locally important 2.7 Ga old granitoid plutons (Casella et al., 1982; Wooden et al., 1982; Montgomery and Lytwyn, 1984). Geologic Timeline for the eastern Beartooth Mountains I. Age and likely provenance of detritus in metasedimentary quartzites zircons from quartzites typically contain well-rounded cores with a distinct chemical zoning pattern and an overgrowth with a fine zoning pattern (Mueller et al., 1988; Henry and Mueller, in preparation). 3.9-4.0 Ga - formation of early granitoid continental rocks that developed zircon found as detritus in younger quartzites (Mueller et al., 1992; 1998). Detrital zircons of this age range represent a relatively minor population (Fig. 3). 3.7-3.8 Ga Second significant crust-forming event that served as a source for a significant amounts of detrital zircons. 3.56 Ga - Lu-Hf zircon age of average Hellroaring zircons (Stevenson and Patchett, 1990). 3.2-3.4 Ga - major crust-forming event that yielded the dominant zircon population in all quartzites (Mueller et al., 1998).

~3.2 Ga 187 Os/ 188 Os model age for separation from the mantle of the melt that formed chromitites at Quad Creek and Hellroaring (Minarik and Henry, 2004). 3.1 Ga youngest probable detrital zircon age (Hellroaring Plateau). This represents the upper age limit for deposition of quartzites (and other metasedimentary rocks) as well as the metamorphism that affected these rocks. Note: individual quartzite units may have different zircon distributions (Fig. 3). This may reflect sedimentation or tectonic mixing processes. II. Metamorphism and Deformation of High Grade Rocks Tectonic mixing 1. Mixing of supracrustal and metaigneous lithologies, early through peak metamorphism (i.e. prograde) to granulite facies conditions; superimposed on postkinematic blackwall i.e. Blackwall formation at lithologic contact, postdeformational, metasomatic zone reequilibrated at 800ºC 2.8-2.9 Ga - M1 granulite facies metamorphism (5-7 kbar 750-800ºC) metabasites with granoblastic texture with Mg-hornblende + opx ± grt ; metapelites above second sillimanite zone with common crd-grt-sill assemblage and migmatization, metaironstones with qtz + mt + opx + grt ± cpx ± hastingsite; metaultramafic with 2-spinel harzburgite and Mghornblendite (Henry et al. 1982; Mogk and Henry, 1988; Maas and Henry, 2002; Henry and Mogk, in preparation). Early to synmetamorphic tectonic mixing and metasomatic zoning at 800 C. F1 folding is isoclinal with common transposition, and some disharmonic folding. 2.84 Ga Pb-Pb age of garnet (inclusions?) probably Fig. 3. Plots of 235 U/ 207 Pb vs. 238 U/ 206 Pb using the SHRIMP for detrital and metamorphic zircon for all data within 10% of concordia for quartzites of eastern Beartooth Mtns (Mueller et al., 1998). Fig. 4. Tentative PTt path of Beartooth metasupracrustals with reference petrogenetic grid of Spear et al. (1999).

representing the time of garnet growth (probably M1) (Dahl et al., 2000) III. Late Archean Magmatism, Metamorphism and Alteration 2.78-2.79 Ga - andesitic magmatism and intrusion of Long Lake granodiorites (these overlap in time and space). 2.79-2.74 Ga - deformation and amphibolite facies metamorphism (M2) of andesites and granodiorites. Overprinting of hornblende after opx. Hornblende-plagioclase-epidote-biotite in intermediate rocks. Hornblende-plagioclase conditions indicate 600-650 C and 4-6 kbar. Open folding of country rocks (F2) 2.74 Ga - massive intrusion of the Long Lake Granite and local M3 granulite facies overprint. Some new growth of zircon rims in Hellroaring quartzites (Mueller et al., 1988, 1992, 1998) The style is multiple, subparallel sill-like intrusions possibly injected along the axial surface of F2. Long Lake granites are subsolvus with two separate plagioclase and K-feldspar phenocrysts. Late tectonic mixing 2 - brittle/ductile mylonitization in shear zones with quartz ribbons and brittle plagioclase and pyroxene. 2.57 Ga Rb-Sr emplacement age for mafic dike intrusion cutting open F3 folds. This indicates that the rocks were still within the ductile regime at that time (Mueller and Rowan, 1973). IV. Proterozoic and Phanerozoic uplift and erosion 2.5 Ga - cooling of terrain below 350 C (K-Ar in muscovite) Carbonation and propylitization. A CO 2 -N 2 -H 2 O fluid entered all of the rocks and locally produced carbonate minerals and various hydrous minerals. The estimated conditions, based on carbonate thermometry and fluid inclusions, are T=350-400 C, 1-2 kbar. Note: the fractures are tensional (i.e. Mode I type) and are probably related to uplift. 2.3 Ga - cooling of terrain below 300 C (K-Ar in biotite). K-Ar mineral ages (Gast et al., 1958) of 2470 and 2520 Ma for muscovite in pegmatites and of 2290 and 2340 Ma for biotite indicate that the terrain had cooled to less than 300ºC by 2290 Ma and had not been subsequently heated above that temperature since that time 1.3 Ga Rb-Sr and K-Ar emplacement age of alkali-olivine mafic dikes (Baadsgaard and Mueller, 1973)

780 Ma 40 Ar/ 39 Ar emplacement age of mafic dike (diabase) from Christmas Lake. Common ages and paleomagnetic characteristics with other mafic dikes that cut at Mt. Moran (Tetons) and the Belt Supergroup of Montana suggest there was a regional magmatic dike swarm event that affected the western part of the Laurentian craton (Harlan et al., 1997). 530 Ma - deposition of Cambrian Flathead sandstone on exposed Precambrian basement. The southeastern portion of the Beartooth Mountains (Main Beartooth Massif) is a high altitude flat or gently rolling plateau that have a few patches of Cambrian sedimentary rocks (e.g. Flathead sandstone on Beartooth Plateau) (Simons et al., 1976). The plateaus are apparently very close to the sub-cambrian depositional surface (i.e.the Precambrian basement was at the surface in early Cambrian times). The Beartooth Butte contains a package of Paleozoic sediementary rocks. 65-57 Ma - rapid uplift (apatite fission track data) 57-50 Ma - shedding of Precambrian detritus into the Wasatch Formation northeast of the present mountain front in the early Eocene (57-50 Ma) (Foose et al., 1961). Simons et al. (1976) argue that the sub-cambrian surface in the northeast Beartooths may have been exposed for up to 30-40 Ma longer than the southwest Beartooths resulting in the greater erosional rounding.