COMPOSITIO MATHEMATICA

Similar documents
COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

Séminaire Équations aux dérivées partielles École Polytechnique

COMPOSITIO MATHEMATICA

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

A note on the generic solvability of the Navier-Stokes equations

COMPOSITIO MATHEMATICA

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

COMPOSITIO MATHEMATICA

Séminaire de Théorie spectrale et géométrie

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Sheaves and Cauchy-complete categories

Groupe de travail d analyse ultramétrique

Séminaire Équations aux dérivées partielles École Polytechnique

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

ANNALES DE L INSTITUT FOURIER

Séminaire d analyse fonctionnelle École Polytechnique

ANNALES DE L I. H. P., SECTION B

RICHARD HAYDON Three Examples in the Theory of Spaces of Continuous Functions

ANNALES DE L I. H. P., SECTION A

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. A note on the generalized reflexion of Guitart and Lair

COMPOSITIO MATHEMATICA

REVUE FRANÇAISE D INFORMATIQUE ET DE

Groupe de travail d analyse ultramétrique

COMPOSITIO MATHEMATICA

Rendiconti del Seminario Matematico della Università di Padova, tome 88 (1992), p

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION C

Séminaire Équations aux dérivées partielles École Polytechnique

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and Banach spaces

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION B

RAIRO MODÉLISATION MATHÉMATIQUE

ANNALES MATHÉMATIQUES BLAISE PASCAL

ANNALES DE L I. H. P., SECTION C

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Séminaire Brelot-Choquet-Deny. Théorie du potentiel

ANNALES DE L INSTITUT FOURIER

RAIRO INFORMATIQUE THÉORIQUE

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

The center of the convolution algebra C u (G) Rendiconti del Seminario Matematico della Università di Padova, tome 52 (1974), p.

REVUE FRANÇAISE D INFORMATIQUE ET DE

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

H. DJELLOUT A. GUILLIN

COMPOSITIO MATHEMATICA

INFORMATIQUE THÉORIQUE ET APPLICATIONS

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

RÜDIGER VERFÜRTH A note on polynomial approximation in Sobolev spaces

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and topological vector spaces

ANNALES DE L I. H. P., SECTION B

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

RAIRO MODÉLISATION MATHÉMATIQUE

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION C

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

REVUE FRANÇAISE D INFORMATIQUE ET DE

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

INFORMATIQUE THÉORIQUE ET APPLICATIONS

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION C

Local Lyapunov exponents and a local estimate of Hausdorff dimension

ANNALES DE L I. H. P., SECTION C

The stochastic logistic equation : stationary solutions and their stability

BULLETIN DE LA S. M. F.

INFORMATIQUE THÉORIQUE ET APPLICATIONS

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

The structure of the critical set in the general mountain pass principle

Transcription:

COMPOSITIO MATHEMATICA FLORIS TAKENS Derivations of vector fields Compositio Mathematica, tome 26, n o 2 (1973), p. 151-158 <http://www.numdam.org/item?idcm_1973 26_2_151_0> Foundation Compositio Mathematica, 1973, tous droits réservés. L accès aux archives de la revue «Compositio Mathematica» (http: //http://www.compositio.nl/) implique l accord avec les conditions générales d utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

COMPOSITIO MATHEMATICA, Vol. 26, Fasc. 2, 1973, pag. 151-158 Noordhoff International Publishing Printed in the Netherlands DERIVATIONS OF VECTOR FIELDS by Floris Takens * 1. Statement of the result Let M be a differentiable, i.e. Coo, manifold. We denote the Lie-algebra of Coo vectorfields on M by x(m). A map D : x(m) - ~(M) is called a derivation if D is R-linear and if D([X, Y)] [D(X), Y]+ [X, D(Y)] for all X, Y e x(m). It is clear that every X e x(m) defines a derivation DX : DX(Y) [X, Y]. In this note we want to show that every derivation can be obtained in this way. THEOREM. For each derivation D : ~(M) ~ x(m) there is a vectorfield Z E x(m), such that for each X E ~(M), D(X) [Z, X]. This theorem has a certain relation with recent work of M. Gel fand, D. B. Fuks, and others [1 ] on the cohomology of Lie-algebras of smooth vectorfields, because it implies that H (x(m); xm)) 0; Hl(x(M); x(m)) being the first cohomology group of x(m) with coefficient in x(m) with the adjoined representation (this was pointed out to me by M. Hazewinkel). There is however one difference in their approach: in defining their cohomology they only use cochains which are continuous mappings (with respect to the Co topology). It is however not difficult to show that the nullety of H1(x(M); x(m)) either case. The theorem will follow from the following lemmas: follows from our theorem in LEMMA 1. Let D : ~(M) ~ x(m) be a derivation and let X E x(m) be zero on some open subset U c M. Then D(X)l U ~ 0. LEMMA 2. Let X E x(r") be a vectorfield on Rn withj3(x)(0) 0, i.e. the 3-jet of each of the component functions of X is zero in the origin. Then there are vectorfields Y,, - - -, Yq Zi, Zq and there is a neighbourhood U of the origin in Rn such that: * During the preparation of this paper, the author was a visiting member of the Mathematical Institute of the University of Strasbourg. 151

152 LEMMA 3. Let D : ~(M) ~ x(m) be a derivation and let X E X(M) and p e M be such that j3(x)(p) 0. Then D(X)(p) 0. In other words, DX(p) is determined by j3(x)(p), also ifj3(x)(p) :/ 0. Lemma 3 will be derived from the lemmas 1 and 2. Finally we shall use lemma 3 to derive: LEMMA 4. Let U e R" be an open connected and simply connected set and let Du : ~(U) ~ x(u) be a derivation. Then there is a unique vectorfield Z E x(u) such that Du(X) [Z, X] for all X e x(u). Finally, we shall see that the theorem follows from lemma 1 and lemma 4. 2. The Proofs PROOF OF LEMMA 1. Suppose X) U 0 and D(X)(q) :0 0 for some point q E U. We take a vectorfield Y E x(m) such that sup(y) c U and [D(X), Y](q) ~ 0. By definition we have D[X, Y] [DX, Y]+ [X, DY] ; evaluating this in q we get 0 [DX, Y](q) e 0, which contracts our assumption. Hence the lemma is proved. PROOF OF LEMMA 2. It is clearly enough to show the lemma for the case with j3(x)(0) 0. Such vectorfields can be written as a finite sum of vectorfields of the following two types: type 1: with 03A3mi ~ 4 and a a C function; type II: with g a C function. To prove the lemma we show that each vectorfield, which is either of type I or of type II, can be written as the Lie-product of two vedtorfields with zero 1-jet in the origin. For X of type I as above, we observe that

Using the fact that 03A3mi ~ 4, we see that we can choose h1,, hn, k1,..., kn so that 03A3hi ~ 2 and 03A3ki ~ 2; hence for type one we have the required Lie-product. Suppose that that 153 is of type II. We want to show that there is a function H, defined on a neighbourhood of the origin in Rn such that in a neighbourhood of the origin. The existence of such H follows from SUB-LEMMA (2.1) Let Z, X be vectorfields on R, which depend variables Ill..., 03BCr, and which can be written in the form on real where f, g are COO functions on Rr+1 (at least on a neighbourhood of the origin), 1 ~ 2k and f(0, )0,..., 0) i 0. Then there is a vectorfield Y, also depending on 03BC1,, Ilr, of the form such that for all (x, 03BC1,, Ilr) in a small neighbourhood of the origin in Rr+1. PROOF of (2,1). is equivalent with The terms with x2k-1 cancel and 1 > obtain: 2k, so we can devide by x2k and

154 Restricting ourselfs to a small neighbourhood of the origin in the (x, p) space, we may devide by f and obtain: This is an ordinary differential equation depending on the parameters Il (03BC1,, Il,). Hence, by the existence and smoothness of solutions of differential equations depending on parameters, it follows that there is a function H which has the required properties. PROOF OF LEMMA 3. For X and p as in the statement of the lemma (i.e. j3(x)(p) 0) we can find, using local coordinates and lemma 2, a neighbourhood U of p in M and vectorfields on M Y1"" Yq and Z1,, Zq such that and Let D : ~(M) ~ x(m) be any derivation. It follows from Lemma 1 that By the definition of derivation, this last expression equals which is zero because the 1-jets of Yi and Zi are zero in p. This proves lemma 3. PROOF OF LEMMA 4. For Du and U c R" as in the statement of Lemma 4 and x1,, xn coordinates on R", we define the functions Dij : U ~ R, i, j 1,, n by We know that for all i, j so

155 Hence, for all i, j, h, we have as U is 1-connected, there are functions Dh : Y - R, h 1,..., n such that Now we define Z e x (U) From the above construction it follows that we have for each Now we define the derivation clearly for all i. Next we define the functions First we show that all these functions are constant: as we have Hence, for all i, j, k, h, so the functions Djkh must be constant (because U is connected). We de-

156 note these constans by Cjkl,. Next we want to show that To prove this we observe that Applying Dl to this, we obtain If we take in * k ~ l j i (this assumes that the dimension n ~ 1 because for n 1 we cannot take k ~ 1 ; if n 1 however a) and b) above are trivially true) we obtain: from which it follows that Cklh 0 if 1 ~ h which proves a) above. Next we take in * k ~ j and 1 i and obtain (using the above result) : From the above calculations it follows that for all i, j We now define Z e x(u) by and observe that for all i, j, it is not hard to see that Z is uniquely determined by these properties. In order to complete the proof of this Imma we have to show that the derivation DÛ, defined by D2U(X) Du(() - [Z, X] is identically zero:

SUB-LEMMA (4.1). Let Du and U c Rn be as in Lemma 4. If, for all i, j, 157 then Du(X) ~ 0 for all X E x(u). PROOF of (4.1) We define the functions Dijkl : U ~ R by To prove that these functions are all constant one can proceed just as in the case with Dijk above, but now we use the fact that we omit the computation. We denote the corresponding constants again by Cijkl Next we observe that applying Du to this we obtain: hence all the constants cijk, are zero. In the same way one can show that for all i, j, k, l. Finally, we apply lemma 3 to obtain the proof: Let X e x(u) and p E U, we want to show Du(X)(p) 0. There is a vectorfield X E x(u) such that the coefficient functions of X are polynomials of degree ~ 3 and such that j3(x)(p) j3()(p). By our previous computations we have Du(X) ~ 0 and by lemma 3 we have D(X)(p) D(X )(p); hence Du(X)(p) 0, this proves (4.1). PROOF of THE THEOREM. For a given derivation D : ~(M) ~ x(m) and an open U c M, we get an induced derivation Du : ~(U) ~ x(u). This Du is constructed as follows: For X e x(u) an p e U one defines Du(X)(p) to be D(X)(p), where X e x(m) is some vectorfield which equals X on some open neighbourhood of p. Clearly Du(X)(p) is well defined (by Lemma 1) and Du is a derivation on x(u).

158 Now we take an atlas f Ui, qji(ui) -+ Rn} of M such that each Ui is connected and simply connected. Using the coordinates XjqJi on each Ui we can apply Lemma 4 to each Du, and obtain on each Ui a vectorfield Zi E X(Ui) such that Du,(X) [Zi, X] for each X ~ y(u,). As DUi and DUj both restricted to Ui n Uj are equal, Zi and Zj both restricted to Ui n Uj also have to be equal. Hence there is a vectorfleld Z E ~(M) such that for each i, Zi ZI Ui. It follows easily that, for each XE x(m), D(X) [Z, X]. 3. Remark One can also take, instad of x(m), the set of vectorfields which respect a certain given structure. To be more explicit, let w be a differential form on M defining a symplectic structure or a volume structure, and let ~03C9(M) be the Lie-algebra of those vectorfields X for which LX03C9 z 0 (Lx means : Lie derivative with respect to X). Now one can ask again whether every derivation D : ~03C9(M) ~ ~03C9(M) is induced by a vectorfield Z E xw(m). This is in general not the case. Take for example M è" and w dxl 039B A dx,, the usual volume form and Then Z e yw(rn) but for each X ~ X.(R"), [Z, X ] ~ ~03C9(Rn); so [Z, - ] is a derivation on ~03C9(Rn). Z E Xro( Rn). REFERENCES This derivation cannot be induced by any M. GEL FAND and D. B. FUKS [1] Cohomologies of Lie algebra of tangential vectorfields of a smooth manifold, Funksional nyi Analiz i Ego Pritozheniya 3 (1969) pp. 32-52. (translation: Functional Analysis and its applications 3 (1969), pp. 194-210. (Oblatum 3-VIII-1972) Mathematisch Instituut Postbus 800 GRONINGEN (The Netherlands).