Stress in Flip-Chip Solder Bumps due to Package Warpage -- Matt Pharr

Similar documents
1 INTRODUCTION 2 SAMPLE PREPARATIONS

TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK

Ratcheting deformation in thin film structures

Study of Electromigration of flip-chip solder joints using Kelvin probes

ADVANCED BOARD LEVEL MODELING FOR WAFER LEVEL PACKAGES

Assessment of Current Density Singularity in Electromigration of Solder Bumps

Reliability Evaluation Method for Electronic Device BGA Package Considering the Interaction Between Design Factors

Finite element model for evaluation of low-cycle-fatigue life of solder joints in surface mounting power devices

THE demand for plastic packages has increased due to

Nonlinear Time and Temperature Dependent Analysis of the Lead-Free Solder Sealing Ring of a Photonic Switch

FEM Analysis on Mechanical Stress of 2.5D Package Interposers

Electromigration time to failure of SnAgCuNi solder joints

314 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 2, MAY Wei Tan, I. Charles Ume, Ying Hung, and C. F. Jeff Wu

Impact of Uneven Solder Thickness on IGBT Substrate Reliability

Chapter 5: Ball Grid Array (BGA)

Reliability assessment for Cu/Low-k structure based on bump shear modeling and simulation method

Effect of under-bump-metallization structure on electromigration of Sn-Ag solder joints

Mechanical Implications of High Current Densities in Flip-chip Solder Joints

Budapest, Hungary, September 2007 The Characteristics of Electromigration And Thermomigration in Flip Chip Solder Joints

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

Mechanical Simulations for Chip Package Interaction: Failure Mechanisms, Material Characterization, and Failure Data

MATERIAL MECHANICS, SE2126 COMPUTER LAB 2 PLASTICITY

Shorter Field Life in Power Cycling for Organic Packages

Drop Impact Reliability Test and Failure Analysis for Large Size High Density FOWLP Package on Package

The Reliability Analysis and Structure Design for the Fine Pitch Flip Chip BGA Packaging

Assessment of Soft Errors due to Alpha Emissions from Presolder on Flip Chip Devices Rick Wong, Shi-Jie Wen, Peng Su, Li Li 10/30/09

Woon-Seong Kwon Myung-Jin Yim Kyung-Wook Paik

Deformation of solder joint under current stressing and numerical simulation II

Effects of underfill material on solder deformation and damage in 3D packages

Cyclic Bend Fatigue Reliability Investigation for Sn-Ag-Cu Solder Joints

Structural Analysis of Large Caliber Hybrid Ceramic/Steel Gun Barrels

Design of a fastener based on negative Poisson's ratio foam adapted from

Critical Issues in Computational Modeling and Fatigue Life Analysisfor PBGA Solder Joints

Electromigration issues in lead-free solder joints

FEA A Guide to Good Practice. What to expect when you re expecting FEA A guide to good practice

TCAD Modeling of Stress Impact on Performance and Reliability

Copyright 2008 Year IEEE. Reprinted from IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 31, NO. 1, MARCH Such permission of

Impact of BGA Warpage on Quality. Mike Varnau

Chapter 7 Mechanical Characterization of the Electronic Packages

Delamination Modeling for Power Packages and Modules. Rainer Dudek, R. Döring, S. Rzepka Fraunhofer ENAS, Micro Materials Center Chemnitz

Reliability analysis of different structure parameters of PCBA under drop impact

Prediction of Encapsulant Performance Toward Fatigue Properties of Flip Chip Ball Grid Array (FC-BGA) using Accelerated Thermal Cycling (ATC)

Temperature Cycling Analysis of Lead-Free Solder Joints in Electronic Packaging

Process Modeling and Thermal/Mechanical Behavior of ACA/ACF Type Flip-Chip Packages

Homogenization on Multi-Materials Elements: Application to Printed Circuit Boards and Warpage Analysis

Flip Chip Reliability

Modal and Harmonic Response Analysis of PBGA and S-N Curve Creation of Solder Joints

Simulation of the Influence of Manufacturing Quality on Thermomechanical Stress of Microvias

Prediction of Elastic Constants on 3D Four-directional Braided

The Stress Field Characteristics in the Surface Mount Solder Joints under Temperature Cycling: Temperature Effect and Its Evaluation

Theory at a Glance (for IES, GATE, PSU)

Ultrasonic Anisotropic Conductive Films (ACFs) Bonding of Flexible Substrates on Organic Rigid Boards at Room Temperature

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

F. G. Marín, D Whalley, H Kristiansen and Z. L. Zhang, Mechanical Performance of Polymer Cored BGA Interconnects, Proceedings of the 10th Electronics

University of Sheffield The development of finite elements for 3D structural analysis in fire

New Die Attach Adhesives Enable Low-Stress MEMS Packaging

Key words Lead-free solder, Microelectronic packaging, RF packaging, RoHS compliant, Solder joint reliability, Weibull failure distribution

A Numerical Approach Towards the Correlation Between Ball Impact Test and Drop Reliability

Relaxation of a Strained Elastic Film on a Viscous Layer

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials

Influence of Underfill on Ball Grid Array (BGA) Package Fatigue Life

Mechanics of wafer bonding: Effect of clamping

Materials and Structures

CHIP/PACKAGE CO-ANALYSIS OF THERMAL-INDUCED STRESS FOR FAN-OUT WAFER LEVEL PACKAGING

Design of Power Electronics Reliability: A New, Interdisciplinary Approach. M.C. Shaw. September 5, 2002

Sensors, Signals and Noise 1 COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Strain Gauges. Signal Recovery, 2017/2018 Strain Gauges

Constitutive and Damage Accumulation Modeling

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Available online at ScienceDirect. XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17)

Thermal-Mechanical Analysis of a Different Leadframe Thickness of Semiconductor Package under the Reflow Process

THREE-DIMENSIONAL SIMULATION OF THERMAL OXIDATION AND THE INFLUENCE OF STRESS

Thermally induced deformations in die-substrate assembly

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

An Engelmaier Model for Leadless Ceramic Chip Devices with Pb-free Solder

The Increasing Importance of the Thermal Management for Modern Electronic Packages B. Psota 1, I. Szendiuch 1

Electromigration in Lead-free Solder Joints under High Frequency Pulse Current: an Experimental Study

Finite Element Method in Geotechnical Engineering

Tutorial - Basic Operation of FLO/STRESS

STUDIES ON NANO-INDENTATION OF POLYMERIC THIN FILMS USING FINITE ELEMENT METHODS

Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics

Modelling Methodology for Linear Elastic Compound Modelling Versus Visco-Elastic Compound Modelling

TRENDS IN LEVENSDUURTESTEN VOOR MICRO-ELEKTRONICA PLOT CONFERENTIE

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4

Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs)

Dynamic behaviour of electronics package and impact reliability of BGA solder joints

Especial Bump Bonding Technique for Silicon Pixel Detectors

Final Design Project: Biodiesel Settling Tank Analysis

Modeling Contact between Rigid Sphere and Elastic Layer Bonded to Rigid Substrate

Stress Analysis Report

Electromigration Immortality of Purely Intermetallic Micro -bump for 3D Integration

A Note on Suhir s Solution of Thermal Stresses for a Die-Substrate Assembly

Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing

884 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 2, NO. 5, MAY 2012

Thermo-Mechanical Reliability of Micro- Interconnects in Three-Dimensional Integrated Circuits: Modeling and Simulation

Component & Board Level Cooling.

A Guide to Board Layout for Best Thermal Resistance for Exposed Packages

The University of Melbourne Engineering Mechanics

Next-Generation Packaging Technology for Space FPGAs

Size Effects In the Crushing of Honeycomb Structures

Transcription:

Stress in Flip-Chip Bumps due to Package Warpage -- Matt Pharr Introduction As the size of microelectronic devices continues to decrease, interconnects in the devices are scaling down correspondingly. Meanwhile, the demand for performance in terms of current capacity continues to increase. The coupling of these two trends leads to a drastically increasing current density in the devices during operation. One of the most significant problems associated with this large current density is a process known as electromigration that is observed in the solder bumps that connect the integrated circuit chips to external circuitry (see Figure 1). Figure 1: Layout of typical flip chip solder bump joining interconnect line to conducting trace [1]. Electromigration is mass transport due to atomic displacement resulting from an electric field. As electrons move through a metal lattice, they tend to scatter at imperfections or by interactions due to phonon vibrations. This scattering results in change in the momentum of the electrons and hence exerts a force on the metal ions known as the wind force and given by F, where Z * wind = Z * eρj is the effective charge number, e is the charge of the electron, ρ is the resistivity, and j is the current density [2]. Hence, one can see that this force is directly proportional to the current density, and above some threshold, this force is large enough to motivate atoms to diffuse from their original positions in the direction of the electron flow. The threshold current density is much smaller in the solder bump than in the Al and Cu interconnects that the solder joins; thus, electromigration in the solder bump can be significant. Furthermore, it has been suggested that the diffusion of atoms caused by electromigration creates tension upstream and compression downstream [3]. Experimental evidence verifies this idea as voids (created under tensile stress) are seen upstream in the solder bumps (see Figure 2). Accumulation and propagation of these voids leads to increased electrical resistance and eventual failure of the solder bump. However, electromigration is only one factor in the creation of the voids; a wide range of others including chemical potential, temperature, creep, and mechanical stress may play additional roles. Figure 2: Formation of Voids due Electromigration in a Flip Chip Joint. The voids have been circled and they are clearly upstream in the electron flow [4].

Dr. Zhigang Suo has proposed a model that couples creep and self-diffusion (in the case of the solder the wind force drives the self-diffusion) [5]. He and I currently are attempting to apply this theory to the solder bump during operation. One factor that we want to take into consideration is a residual mechanical stress, as it has been observed experimentally that an applied mechanical stress decreases the mean time to failure of the solder bump (see Figure 3). Such a stress is introduced naturally during operation due to the thermal mismatch between the die on one side of the solder bump and the substrate (a printed circuit board PCB) on the other (Figure 1). To permanently connect the solder to the rest of the system, the solder is heated up to its melting point to produce an electrical connection and is subsequently cooled to room temperature. The temperature of the system is then increased again during operation of the device [6]. This results in warpage (increased curvature) of the substrate during operation, which can lead to various mechanical stresses being placed on the solder bumps. Accurate estimation of these naturally occurring mechanical stresses will allow us to predict how much of a role they have in the overall stress state of the solder bump compared to the other factors such as creep coupled with electromigration. Circuit Board e e S e MTTF = 183 hrs W Circuit Board e e S e MTTF = 880 hrs Figure 3: Experiments indicate that when an external mechanical load is applied to the flip-chip, the mean-time-tofailure is drastically reduced. Finite Element Model Description Finite element analysis was employed to predict mechanical stress levels in these solder bumps due to temperature change during assembly and operation. The model took into account the die, the PCB substrate, the solder bumps, and the underfill, with the geometry and mechanical properties given in Figures 4 and Table 1, respectively.

5000 400 200 400 licon Bismaleimide Triazene (BT) Substrate h Cooling Underfill Circui 200 200 Figure 4: Geometry used in simulation. All dimensions are in μm. It was assumed the chip is symmetric about its right edge. Material Young s Modulus, E (GPa) Poisson s Ratio (ν) Thermal Exp. Coefficient (10-6/K) Sn-3.5Ag 50 0.3 23 Underfill 6 0.35 30 licon chip 131 0.3 2.8 Bismaleimide Triazene (BT) Substrate 26 0.39 15 Table 1: Materials properties of components [7] The system was approximated as a 2D system and a mesh was created with 4-node linear coupled temperature-displacement quadrilateral elements. As one can see in Figure 6, the mesh is fairly fine, as it is the author s opinion that one might as well create a fine mesh to improve accuracy as long as it does not take too long to run. (In this case, the simulations usually took about 2 minutes.) Furthermore, the mesh is refined near regions of interest such as the solder bumps and the edges.

Figure 5: System mesh Then, the study was performed following the outline below: Step 1: 221 C melting point of solder Step 2: 23 C Coupled temp-disp steady state x-symmetry Condition on Right End Step 3 (Attempted): 1A current through solder Coupled thermal-electric Inputted thermal properties of materials Did not converge Step 3: (Actually Used) and underfill at 100 C; linear variation in substrate and to ambient temp of 70 C Used subroutine to define this temperature field It was assumed that the solder fully demonstrated properties of a solid directly below its melting point. This assumption is not completely correct as it really still exhibits some liquidlike behavior at elevated temperatures, but modeling of such behavior is extremely advanced, and the author s knowledge of finite elements is too elementary as to perform such a study. Also, it should be noted that the original goal was to implement the coupled thermal-electric routine built into Abaqus in addition to the coupled temperature-displacement routine to more fully capture the thermal, mechanical, and electrical interactions that are present in this complicated system. The thermal and electric coupling comes about through Joule heating that occurs when a current is passed through a conductor. The basic idea is that moving electrons that form the current impart some of their kinetic energy to the ions of the conductor, increasing the conductor s temperature. In the Abaqus model, natural convection was allowed for at the free-surfaces of the material and all of the pertinent thermal properties were assigned to each material. However, as is noted in the outline, this part of the study would not converge. Fortunately, this problem was circumvented by finding some experimental data for flip-chips that indicated that the solders heat up to approximately 100 C during operation and that the free surfaces are approximately 70 C [1]. So, a linear variation between these known data points was assumed and was implemented using a subroutine to define the temperature field. The results of the study after all the aforementioned steps are performed are given in the following section.

Results Figure 6: Mises Stress Figure 7: 11

Figure 8: 22 From Figures 6-8, one can make some interesting observations. In Figure 6, the Mises stress in the solder bumps was found to be about 150 MPa, with little variation among the solder bumps and within each bump. Figure 7 demonstrates that the maximum 11 stress of a bump near the left side of the figure was about 108 MPa, and the 11 stress in a bump near the right side of the figure was about 90 MPa. Also, one can see that there is a large variation in stress within each solder bump. Finally, the stress component that is of most interest to the author (to compare a theoretical model to an observed system) is 22. It is observed in the study that the stress was about 20 MPa in the bumps and had only a slight variation within each bump and among all the bumps. So, the most important result for the purposes of this study is that the stress, 22, in the solder bumps was found to be approximately 20 MPa in all the bumps. Model Validation nce there are no good experimental results available for this system and the geometry and multiple materials present in the model make this fairly difficult to solve analytically, it is hard to fully validate the results. However, one can make a few observations. First of all, the curvature of the system agrees with intuition. The solder starts in an essentially stress-free molten state. Above the solder bumps is the semiconductor, which is fairly stiff and has a relatively small coefficient of thermal expansion, and below the solder bumps is the circuit board, which is fairly compliant and has a relatively large coefficient of thermal expansion (Figure 9). It is assumed that the solder bumps solidify just below their melting point. At this point, the solder bumps become rigidly connected to the semiconductor and the circuit board. To get an idea of curvature, imagine that the is much stiffer than the circuit board so that it has no curvature upon cooling to room temperature (obviously this is not entirely correct but is much stiffer than the circuit board see Figure 9). nce the circuit board has a fairly large coefficient of thermal expansion, it will try to shrink significantly upon cooling. However, the solder bumps will resist this shrinking since they are now rigidly connected to the circuit board. Still, the bottom surface of the circuit board will be essentially free to shrink and hence will contract more than the top surface. This situation will create a concave downward curvature (see Figure 9).

in Molten State rigid, Small CTE Substrate, large CTE h Figure 9: Predicted Curvature This curvature is the same as is seen in Figures 6-8 so at least the Abaqus results agree qualitatively with the above physical intuition. Another piece of evidence suggesting that these results seem at least reasonable is that Intel has told the author that they predict the 22 stress in the solder due to this package warpage effect (from rough curvature measurement experiments) to be between 0 and 50 MPa, which was observed in the study. Although it is difficult to develop an analytical model for the system model in Figures 6-8, one can easily develop an analytical solution for a thin layer of a material sandwiched between layers of another material that is cooled from an elevated temperature. A free body diagram of this scenario is depicted in Figure 10. h F h F h F Figure 10: Free body diagram of one material sandwiched between two others

Away from the end of the materials, one expects the stress to be uniform in each material in the x-direction (this is essentially a 1D problem) since by Saint-Venant s principle one expects this end effect to be localized. With this approximation, one can easily calculate the stress in the solder away from its end as follows: Deformation Geometry (since solder and silicon are bonded): ε = ε Force balance: 2F + F 2 h + = 0 h = 0 Material Model: ε ε = ν + α Esi E ( T T ) low high = ν + α E E ( T T ) This is a system of 4 unknowns and 4 equations. The solution is: ( α α )( T T ) = 1 ν 1 ν + E E high low h 2h low Substituting in the relevant parameters from Table 1 and Figure 10, one obtains: 266. 6MPa The results of an Abaqus study on the system in Figure 10 are given on the next page. high

Figure 11: 11 for system in Figure 10 From Figure 11, one can see that the stress in the solder layer (the red band in the figure) is about 4 N 2.667 *10 = 266. 7MPa 2 μm The agreement with the previously developed analytical solution is excellent! Hence, it seems that Abaqus is highly capable of handling this class of thermal problems with various materials, which adds a great amount of validation to the results produced for the study discussed in the Results section. Conclusions The effect of temperature change during assembly and operation on the stress state of solder bumps in flip chips was examined using finite element analysis. The model took into account the die, the PCB substrate, the solder bumps, and the underfill. The stress state during operation was fully characterized; most notably, a stress of 22 = 20 MPa was found. It was shown that the stress results seem fairly reasonable and that Abaqus is capable of producing results that are in agreement with analytical solutions for this general class of problems.

References [1] C. Chen and S. W. Liang, 2007, Electromigration issues in lead-free solder joints, J. Mater. Sci., 18, pp. 259-268. [2] K. N. Tu, 2003, Recent advances on electromigration in very-large-scale-integration of interconnects, J. Appl. Phys., 94, pp. 5451-5473. [3] I.A. Blech and C. Herring, 1976, Stress Generation by Electromigration, Appl. Phys. Lett., 29 pp. 131-133. [4] E. C. C. Yeh, W. J. Choi, and K. N. Tu, P. Elenius, and H. Balkan, 2002, Appl. Phys. Lett., 80, 580. [5] Z. Suo, 2004, A continuum theory that couples creep and self-diffusion, Journal of Applied Mechanics 71, pp. 646-651. [6] Tu, K.N. et al, Physics and materials challenges for lead-free solders, J. Appl. Phy., Vol. 93, No. 3 (2003). 24, NO. 4 (2001), pp. 667-672. [7] ewert, T.; Liu, S.; Smith, D. R.; and Madeni, J. C., (2002), Database for Properties with Emphasis on New Leadfree s, NIST & Colorado School of Mines, Release 4.0, Feb. 2002, available at http://www.boulder.nist.gov/div853/lead_free/solders.html