Chemical Organization Theory

Similar documents
The Bio-chemical Information Processing Metaphor as a Programming Paradigm for Organic Computing (CHEMORG III)

Reaction Flow Artificial Chemistries

Blank for whiteboard 1

CLOSURE IN ARTIFICIAL CELL SIGNALLING NETWORKS Investigating the Emergence of Cognition in Collectively Autocatalytic Reaction Networks

STUDY OF THE DYNAMICAL MODEL OF HIV

Viral evolution model with several time scales

Is the Concept of Error Catastrophy Relevant for Viruses? Peter Schuster

Systems biology and complexity research

Error thresholds on realistic fitness landscapes

Autocatalytic sets and chemical organizations: modeling self-sustaining reaction networks at the origin of life

EVOLUTION BEFORE GENES

Slide 1 / Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results?

Chemistry on the Early Earth

Formal Quantitative Analysis of Reaction Networks Using Chemical Organisation Theory Mu, Chunyan; Dittrich, Peter ; Parker, David; Rowe, Jonathan

86 Part 4 SUMMARY INTRODUCTION

The Origin of Life on Earth

Chapters AP Biology Objectives. Objectives: You should know...

Experiments with a Turing gas: Mimicking chemical evolution*

Bio 100 Study Guide 14.

THINGS I NEED TO KNOW:

Dynamic optimisation identifies optimal programs for pathway regulation in prokaryotes. - Supplementary Information -

Using Evolutionary Approaches To Study Biological Pathways. Pathways Have Evolved

Neutral Networks of RNA Genotypes and RNA Evolution in silico

BIOLOGY I: COURSE OVERVIEW

The Origin Of Life: A Network Oriented View

BCH 400/600 Introductory Biochemistry

UNIVERSITY OF CALIFORNIA SANTA BARBARA DEPARTMENT OF CHEMICAL ENGINEERING. CHE 154: Engineering Approaches to Systems Biology Spring Quarter 2004

Bacterial Genetics & Operons

How Nature Circumvents Low Probabilities: The Molecular Basis of Information and Complexity. Peter Schuster

Part 2. The Basics of Biology:

(M,R) Systems and RAF Sets: Common Ideas, Tools and Projections

Essential knowledge 1.A.2: Natural selection

A different perspective. Genes, bioinformatics and dynamics. Metaphysics of science. The gene. Peter R Wills

How to Build a Living Cell in Software or Can we computerize a bacterium?

Chapter 7: Metabolic Networks

AP Biology Curriculum Framework

Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 1:

Hierarchical Self-Organization in the Finitary Process Soup

Tracing the Sources of Complexity in Evolution. Peter Schuster

V15 Flux Balance Analysis Extreme Pathways

Free Energy. because H is negative doesn't mean that G will be negative and just because S is positive doesn't mean that G will be negative.

What Is Biology? Biologists Study? The study of living things. Characteristics Classifications Interactions between organisms Health & Disease

Curriculum Links. AQA GCE Biology. AS level

Research Article Nonlinear Dynamics and Chaos in a Fractional-Order HIV Model

Dynamical-Systems Perspective to Stem-cell Biology: Relevance of oscillatory gene expression dynamics and cell-cell interaction

AP Biology Essential Knowledge Cards BIG IDEA 1

VCE BIOLOGY Relationship between the key knowledge and key skills of the Study Design and the Study Design

Organisation-Oriented Coarse Graining and Refinement of Stochastic Reaction Networks Mu, Chunyan; Dittrich, Peter; Parker, David; Rowe, Jonathan

Biology Unit Overview and Pacing Guide

Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse

Philipsburg-Osceola Area School District Science Department. Standard(s )

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

About OMICS Group Conferences

New Computational Methods for Systems Biology

Bio 100 Study Guide 14.

Part III Biological Physics course

Hybrid Model of gene regulatory networks, the case of the lac-operon

Missouri Educator Gateway Assessments

Biology Final Review Ch pg Biology is the study of

BIO 101 INTRODUCTORY BIOLOGY PROF. ANI NKANG DEPT. OF BIOLOGICAL SCIENCES ARTHUR JARVIS UNIVERSITY

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Model Worksheet Teacher Key

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1)

Dynamic Stability of Signal Transduction Networks Depending on Downstream and Upstream Specificity of Protein Kinases

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845)

An Application of Genetic Algorithms to Membrane Computing

The tree of life: Darwinian chemistry as the evolutionary force from cyanic acid to living molecules and cells

Categorised Counting Mediated by Blotting Membrane Systems. Data Mining and Numerical Algorithms

Wilson Area School District Planned Course Guide

Self-repairing and Mobility of a Simple Cell Model

Spatial Information Management in the Context of Organizational Development the Approach in North-Rhine Westphalia, Germany

Chapter 19. Gene creatures, Part 1: viruses, viroids and plasmids. Prepared by Woojoo Choi

Numerical computation and series solution for mathematical model of HIV/AIDS

A A A A B B1

Big Idea 1: The process of evolution drives the diversity and unity of life.

Simplicity is Complexity in Masquerade. Michael A. Savageau The University of California, Davis July 2004

Networks in systems biology

Living Mechanisms as Complex Systems

AP Curriculum Framework with Learning Objectives

Slide 1 / 6. Free Response

Explain your answer:

TEACHER CERTIFICATION STUDY GUIDE. Table of Contents I. BASIC PRINCIPLES OF SCIENCE (HISTORY AND NATURAL SCIENCE)

2015 FALL FINAL REVIEW

Preprint núm May Stability of a stochastic model for HIV-1 dynamics within a host. L. Shaikhet, A. Korobeinikov

Anomalous diffusion in biology: fractional Brownian motion, Lévy flights

The Amoeba-Flagellate Transformation

Catalytic Search in Dynamic Environments

Evolving Antibiotic Resistance in Bacteria by Controlling Mutation Rate

Endless evolutionary paths to Virtual Microbes

New Results on Energy Balance Analysis of Metabolic Networks

Evolution in Action: The Power of Mutation in E. coli

Microbiology BIOL 202 Lecture Course Outcome Guide (COG) Approved 22 MARCH 2012 Pg.1

Simulation of a Stochastic Cellular Automata HIV/AIDS Model for Investigation of Spatial Pattern Formation Mediated by CD4 + T Cells and HIV Dynamics

Modeling (bio-)chemical reaction networks

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016

Bioinformatics: Network Analysis

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

CHAPTER 1 Life: Biological Principles and the Science of Zoology

Side-by-Side Comparison of the Texas Educational Knowledge and Skills (TEKS) and Louisiana Grade Level Expectations (GLEs) SCIENCE: Biology

Flux balance analysis in metabolic networks

Transcription:

Chemical Organization Theory How are living systems organized? How do they evolve? Peter Dittrich Bio Systems Analysis Group FSU Jena Friedrich-Schiller-Universität Jena Jena Centre for Bioinformatics

Bio Systems Analysis Group Use computational approaches to explain complex dynamical phenomena found in living systems ESIGNET Evolving Cell Signalling Networks in silico (T. Hinze, T. Lenser, EU) Systems Analysis of the Cell Cycle (B. Ibrahim, DAAD) Chemical Network Theory and Simulation (P. Speroni d.f., F. Cenler, BMBF) Organic Computing: Chemical Prgramming (N. Matsumaru, DFG) Semantics of Biological Models (Ch. Knüpfer, RLS) Autonomous Experimentation (N. Matsumaru, BMBF) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 2

How is life (and its origin) organized? 1. What is the bio-chemical organization of an organism? 2. How did the bio-chemical organization of the pre-prebiotic soup evolved? 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 3

Quality (not quantity)

Q1 How does the lattice of organizations of an organism looks like? lattice of organizations = organizational structure 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 5

What is an answer? [Source: Puchalka/Kierzek (2004)Biophys. J. 86, 1357] 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 6

Reaction Systems

Example Level IV: Catalytic Flow System 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 8

Example Level IV: Catalytic Flow System + + (catalytic) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 9

Example Level IV: Catalytic Flow System + + (catalytic) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 10

Example Level IV: Catalytic Flow System + + (catalytic) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 11

Example Level IV: Catalytic Flow System + + k 1 k 2 (catalytic) dx 1 /dt = k 2 x 2 x 2 dx 2 /dt = k 1 x 1 x 2 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 12

Example Level IV: Catalytic Flow System + + k 1 k 2 (catalytic) reaction network dilution flux dx 1 /dt = k 2 x 2 x 2 - x 1 dx 2 /dt = k 1 x 1 x 2 x 2 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 13

Chemical Organization Theory

Chemical Organization Organization := a set of molecules that is (algebraically) closed and self-maintaining There is no reaction producing any other molecules than the member of the set. Within the set, all molecules consumed by a reaction can be reproduced by a reaction. [Speroni di Fenizio/Dittrich (2005/7) inspired by Fontana, Buss, Rössler, Eigen, Kauffman, Maturana, Varela, Uribe] 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 15

Fixed Point and Organization Theorem Given a fixed point of the ODE describing the dynamics of a reaction system, then the set of molecules represented by that fixed point is an organization. [Dittrich/Speroni di Fenizio, (2005,2007)] 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 16

Practical View 4 4 Chemical 1 Organization 1 Theory 2 3 2 3 Reaction network Organization 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 17

All Organizations Organization 4 4 Chemical 1 Organization 1 Theory 2 3 2 3 Reaction network Organizations 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 18

Lattice of Organizations Hasse diagram of the organizations 4 {1,2,3,4} 2 1 3 Chemical Organization Theory {1} {2, 3} { } Reaction network Organizations 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 19

Generate Organization Hasse diagram of the organizations 4 {1,2,3,4} 2 1 3 Chemical Organization Theory {1} {2, 3} { } Reaction network G O ({3, 4}) =? Organizations 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 20

Generate Organization Hasse diagram of the organizations 4 {1,2,3,4} 2 1 3 Chemical Organization Theory {1} {2, 3} Reaction network generate organization G Org ({3, 4}) = {1} { } Organizations 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 21

Union of Organizations Hasse diagram of the organizations 4 {1,2,3,4} 1 Chemical Organization Theory {1} {2, 3} 2 3 Reaction network generate organization G Org ({3, 4}) = {1} {1} U O {2, 3} := G Org ({1} U {2,3}) union of organizations 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 22 { } Organizations

Self-maintenance Organization := closed & self-maintaining set of (molecular) species 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 23

Example 1 a + b -> 2 b 2 b a + c -> 2 c b -> d a d e c -> d b + c -> e 2 c -> a a -> b -> c -> d -> e -> 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 24

Example 1 Organization {a, b, d} 2 b a d e 2 c 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 25

Example 1 Organization {a, b, d} 2 b a d e 2 c 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 26

Example 1 Organization {a, b, d} 2 b 1. Find flux vector outside of org. = 0 a d 0 e 0 0 0 2 c 0 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 27

Example 1 1 Organization {a, b, d} 2 b 9 8 1. Find flux vector 10 a 1 d 1 0 e 0 outside of org. = 0 inside of org. > 0 0 0 2 c 0 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 28

Example 1 1 Organization {a, b, d} 2 b 9 8 1. Find flux vector 10 a 1 d 1 0 e 0 0 outside of org. = 0 inside of org. > 0 0 0 2 c 0 0 2. Check production rates outside of org. = 0 (closure) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 29

Example 1 1 0 Organization {a, b, d} 2 b 10 0 a 1 9 8 7 d 1 0 e 1. Find flux vector outside of org. = 0 0 inside of org. > 0 0 0 0 2 c 0 0 2. Check production rates outside of org. = 0 (closure) inside of org. 0 (self-maint.) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 30

Example 1 All Organizationen 2 b a d e 2 c 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 31

Example 1 All Organizationen 2 b a d e 2 c a 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 32

Example 1 All Organizationen 2 b a d e 2 c a b d a 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 33

Example 1 All Organizationen 2 b a d e 2 c a b d a c d a 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 34

Example 1 2 b Hasse diagram of organizations a b c d e a d e 2 c a b d a c d a 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 35

Überlappende Hierarchie 2 b Hasse diagram of organizations a b c d e a d e 2 c a b d a c d a 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 36

Theorem: Fixed points are instances of organizations differential equation x&= 0 = f f (x) fixed point / (stationary solution) ( x 0 ) [ a] [ b] x = [ c] [ d] [ e] 0 x 4 7 = 0 11 0 { a, b, d } a b d Hasse diagram of organizations a b c d e a c d 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 37 a Dittrich/Speroni d.f., Bull. Math. Biol., 2007

Q1 How does the lattice of organizations of an organism looks like? organizational structure = lattice of organizations 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 38

Trivially, all organisms have at least one organization S O 2 W S + O 2O + W S O W {S, O, W} {S} 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 39

Is there more? S + O 1 2O 1 + W S + O 2 2O 2 + W S O W 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 40

Is there more? S + O 1 2O 1 + W S + O 1 + O 2 2O 2 + W S O W 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 41

How does the lattice organizations in an organism looks like? number? hight? size distribution? 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 42

We looked at a couple of network models of real systems photochemistries (dead, closed but not isolated systems) metabolism regulated metabolism lambda-phage HIV - immunesystem 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 43

Population Dynamics HIV Immunesystem Model

initial state Test-bed:HIV Virus Dynamics uninfected CD4+ T cells infected CD4+ T cells CTL precursors CTL effectors x& = λ y& = w& = z& = simulation model of HIV replication (4 ODEs) dx βxy cxyw cqyw [Wodarz/Nowak, PNAS 96:14464,1999] βxy ay cqyw bw state after some time hz uninfected CD4+ T cells infected CD4+ T cells CTL precursors CTL effectors pyz CTL = cytotoxic T lymphocytes 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 45

HIV Dynamics: Mathematical analysis 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 46

HIV Immunsystem Populationsmodell T-Zelle infizierte T-Zelle CTL-Pre CTL-Ef Modell nach: C.D. Wodarz, M. A. Nowak, PNAS 96 (1999), 14464-13369 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 47

HIV Immunsystem Populationsmodell T-Zelle + infizierte-t-zelle 2 infizierte-t-zelle T-Zelle 2 infizierte T-Zelle CTL-Pre CTL-Ef Modell nach: C.D. Wodarz, M. A. Nowak, PNAS 96 (1999), 14464-13369 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 48

HIV Immunsystem Populationsmodell T-Zelle + infizierte T-Zelle + CTL-Pre T-Zelle + infizierte T-Zelle + 2 CTL-Pre T-Zelle infizierte T-Zelle 2 CTL-Pre CTL-Ef Modell nach: C.D. Wodarz, M. A. Nowak, PNAS 96 (1999), 14464-13369 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 49

HIV Immunsystem Populationsmodell T-Zelle infizierte T-Zelle CTL-Pre CTL-Ef Modell nach: C.D. Wodarz, M. A. Nowak, PNAS 96 (1999), 14464-13369 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 50

HIV Immunsystem Populationsmodell T-Zelle infizierte T-Zelle CTL-Pre CTL-Ef Modell nach: C.D. Wodarz, M. A. Nowak, PNAS 96 (1999), 14464-13369 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 51

HIV Immunsystem Populationsmodell T-Zelle 2 infizierte T-Zelle 2 CTL-Pre CTL-Ef Modell nach: C.D. Wodarz, M. A. Nowak, PNAS 96 (1999), 14464-13369 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 52

Organisation := abgeschlossen und selbsterhaltend T-Zelle 2 infizierte T-Zelle 2 CTL-Pre CTL-Ef Organisation := := (algebraisch) abgeschlossene und und selbsterhaltende Molekülmenge P. Dittrich, P. Speroni di Fenizio, Chemical organization theory, Bull. Math. Biol. (2007), in print N. Matsumaru, P. Speroni di Fenizio, F. Centler, P. Dittrich (2005), A Case Study of Chemical Organization Theory Applied to Virus Dynamics. In: J. T. Kim (Ed.), Systems Biology Workshop at ECAL, Kent, (2005) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 53

Alle Organisationen T-Zelle 2 infizierte T-Zelle 2 CTL-Pre CTL-Ef P. Dittrich, P. Speroni di Fenizio, Chemical organization theory, Bull. Math. Biol. (2007), in print N. Matsumaru, P. Speroni di Fenizio, F. Centler, P. Dittrich (2005), A Case Study of Chemical Organization Theory Applied to Virus Dynamics. In: J. T. Kim (Ed.), Systems Biology Workshop at ECAL, Kent, (2005) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 54

Organisationshierachie Organisationshierachie T-Zelle 2 infizierte T-Zelle { T-Zelle, infizierte T-Zelle, CTL-Pre, CTL-Ef } 2 { T-Zelle, infizierte T-Zelle } CTL-Pre CTL-Ef { T-Zelle } P. Dittrich, P. Speroni di Fenizio, Chemical organization theory, Bull. Math. Biol. (2007), in print N. Matsumaru, P. Speroni di Fenizio, F. Centler, P. Dittrich (2005), A Case Study of Chemical Organization Theory Applied to Virus Dynamics. In: J. T. Kim (Ed.), Systems Biology Workshop at ECAL, Kent, (2005) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 55

Dynamics Organisationshierarchie ill { T-Zelle, infizierte T-Zelle, CTL-Pre, CTL-Ef } healthy { T-Zelle, infizierte T-Zelle } Zeit (d) ill { T-Zelle } P. Dittrich, P. Speroni di Fenizio, Chemical organization theory, Bull. Math. Biol. (2007), in print N. Matsumaru, P. Speroni di Fenizio, F. Centler, P. Dittrich (2005), A Case Study of Chemical Organization Theory Applied to Virus Dynamics. In: J. T. Kim (Ed.), Systems Biology Workshop at ECAL, Kent, (2005) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 56

Explain medication strategy Organisationsstruktur Medication strategy gesund krank { T-Zelle, infizierte T-Zelle, CTL-Pre, CTL-Ef } { T-Zelle, infizierte T-Zelle } gesund { T-Zelle } N. Matsumaru, P. Speroni di Fenizio, F. Centler, P. Dittrich (2005), A Case Study of Chemical Organization Theory Applied to Virus Dynamics. In: J. T. Kim (Ed.), Systems Biology Workshop at ECAL, Kent, (2005) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 57

Compare models N. Matsumaru, F. Centler, P. Speroni di Fenizio, P. Dittrich (2006); it - Information Technology, 48(3):1-9, 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 58

Evaluate model quality Organisationsstruktur gesund { T-Zelle, infizierte T-Zelle, CTL-Pre, CTL-Ef } Model quality krank { T-Zelle, infizierte T-Zelle } gesund { T-Zelle } N. Matsumaru, P. Speroni di Fenizio, F. Centler, P. Dittrich (2005), A Case Study of Chemical Organization Theory Applied to Virus Dynamics. In: J. T. Kim (Ed.), Systems Biology Workshop at ECAL, Kent, (2005) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 59

Application of Organization Theory to Planetary Photochemistries Mars 31 molecular species, 103 reactions main component: CO 2 (95%) http://www.fpsoftlab.com/images/screenshots/mars-640x480-1.jpg Y. L. Yung and W. B. DeMore (1999) Photochemistry of Planetary Atmospheres,Oxford University Press 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 60

Mars - Reaction Network File... 1 CO2 1 hv -> 1 CO 1 O 2 O -> 1 O2 1 O 1 O2 1 N2 -> 1 O3 1 N2 1 O 1 O2 1 CO2 -> 1 O3 1 CO2 1 O 1 O3 -> 2 O2 1 O 1 CO -> 1 CO2 1 O(1D) 1 O2 -> 1 O 1 O2 1 O(1D) 1 O3 -> 2 O2 1 O(1D) 1 O3 -> 1 O2 2 O 1 O(1D) 1 H2 -> 1 H 1 OH 1 O(1D) 1 CO2 -> 1 O 1 CO2 1 O(1D) 1 H2O -> 2 OH 2 H -> 1 H2 1 H 1 O2 -> 1 HO2 1 H 1 O3 -> 1 OH 1 O2 1 H 1 HO2 -> 2 OH 1 H 1 HO2 -> 1 H2 1 O2 1 H 1 HO2 -> 1 H2O 1 O 1 O 1 H2 -> 1 OH 1 H 1 O 1 OH -> 1 O2 1 H... 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 61

Mars at Night 13 molecules 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 62

Mars at Daytime 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 63

Distribution of Organizations 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 64

Randomizing the Network at daytime 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 65

How does the lattice of organizations of an organism looks like?? 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 66

Metabolic Models network from Palsson et al (?) analysis by C. Kaleta 2006 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 67

E. Coli Metabolism Model 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 68

E. coli Model (III) synthesis of some dntps lipid synthesis ACP or hmrsacp pyrimidine nucleotide synthesis q8 (quinone) central metabolism+ Minimal growth scenario: D-Glucose, O 2, Fe 2, NH 4, H +, Pi, SO 4 analysis by C. Kaleta, F. Centler, 2006 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 69

E. coli Model (II) Regulated Network Palsson/Covert Organization theory is able to predict growth phenotypes of various mutants quite nicely But the organizational structure is simple {S, O, W} C. Kaleta, F. Centler, P. Speroni di Fenizio, P. Dittrich (2007), submitted 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 70

Chemical Evolution Overview Organizations in Space Chemical Information Processing and Chemical Programming 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 71

Q2 How did the bio-chemical organization of the pre-prebiotic soup evolved? What is the characteristics of the organizational evolution? upward? downward?... 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 72

A View of Chemical Evolution 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 73

Actual Evolution 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 74

Actual Evolution 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 75

Actual Evolution vs. Organizational Evolution

Organizational Evolution 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 77

Organizational Evolution 1. Upwards [t1 t2] O O t1 t 2 Hasse diagram of organizations {1,2,3,4} {2, 3} {1} t1 t2 { } [2] [3] Organizations [1] [4] Dynamics 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 78

Organizational Evolution 1. Upwards [t1 t2] 2. Downwards [t2 t3] O O O t1 t 2 O t 2 t3 Hasse diagram of organizations {1,2,3,4} {2, 3} {1} t1 t2 t3 { } [2] [3] Organizations [1] [4] Dynamics 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 79

Organizational Evolution 1. Upwards [t1 t2] 2. Downwards [t2 t3] 3. Sidewards [t1 t3] O O O t1 t 2 O t 2 t3 otherwise Hasse diagram of organizations {1} {1,2,3,4} {2, 3} A set of existing species and an organization are not equivalent. e.g., {2,3,4} t1 t2 t3 [1] [4] Dynamics [2] [3] { } Organizations 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 80

Theoretical vs. Practical Theoretically: Every possible species is known. Entire reaction network is given. Every possible organization can be calculated. It is possible to define the dynamics on the ODE Practically: NOT every possible species is known. the entire network is NOT given. NOT evey possible organization can be calculated. 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 81

Perspective Change Hasse diagram of the organizations {1,2,3,4} {2, 3} {1} t1 t2 t3 { } [2] [3] Organizations [1] [4] Dynamics 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 82

Perspective Change {1,2,3,4} {1,2,3,4} {2, 3} {2, 3} {1} {1} {1} { } { } t1 t2 t3 { } [2] [3] [1] [4] Dynamics 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 83

Downward movement 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 84

Upward Movements (adding mutations) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 85

Q2 How did the bio-chemical organization of the pre-prebiotic soup evolved? What is the characteristics of the organizational evolution? upward? downward?... 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 86

Q2 - Notes There are two levels of chemical evolution. Actual evolution (the actual vessel) Organizational evolution (upward, downward, sideward movements) These levels are different. If the organizations are complex, a downward movement (organizational level) can lead to a state with a higher diversity (actual evolution). 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 87

Space Space plays a fundamental role in many natural bio-chemical processes

Organizations in Space 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 89

Membranes Clusters Waves Spatial Scales Aspects of Space 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 90

Space [P. Speroni di Fenizi, P. Dittrich, Chemical Organizations at Different Spatial Scales, LNCS, Springer, 2007] 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 91

Chemical Computing Chemical Programming

10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 93 Chemical Flip-Flop Reaction network c D A C d A C D a C d a + + + + d C B D c B D C b D c b + + + + 0 0 0 0 + + + + D d C c B b A a D } B,c,C, d, A,b, a, M = { 256 possible sets of molecular species

Chemical Flip-Flop (with two inputs) 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 94

Flip-Flop dynamics 10.01.2008 Frankfurt, FIAS Peter Dittrich - FSU & JCB Jena 95

Acknowledgements Pietro Speroni di Fenizio, Naoki Matsumaru, Florian Centler, Christoph Kaleta Friedrich-Schiller-Universität Jena Jena Centre for Bioinformatics BMBF (Federal Ministry of Education and Research, Germany) 0312704A, DFG (German Research Foundation) Grant Di 852/4-1