Coll. Ljubljana, H.Kolanoski - IceCube Neutrino Observatory 1. Hermann Kolanoski Humboldt-Universität zu Berlin and DESY

Similar documents
Origin of Cosmic Rays

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

IceCube: Ultra-high Energy Neutrinos

High Energy Neutrino Astronomy

Particle Physics Beyond Laboratory Energies

High Energy Neutrino Astrophysics Latest results and future prospects

Kurt Woschnagg UC Berkeley

Neutrino Astronomy fast-forward

IceCube: Dawn of Multi-Messenger Astronomy

Dr. John Kelley Radboud Universiteit, Nijmegen

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Cosmic Ray Astronomy. Qingling Ni

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

Astroparticle Physics with IceCube

IceCube Results & PINGU Perspectives

Neutrino Astronomy. Ph 135 Scott Wilbur

Mariola Lesiak-Bzdak. Results of the extraterrestrial and atmospheric neutrino-induced cascade searches with IceCube

A Summary of recent Updates in the Search for Cosmic Ray Sources using the IceCube Detector

neutrino astronomy francis halzen university of wisconsin

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Gamma-rays, neutrinos and AGILE. Fabrizio Lucarelli (ASI-SSDC & INAF-OAR)

Mass Composition Study at the Pierre Auger Observatory

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Cosmic Rays. M. Swartz. Tuesday, August 2, 2011

Searches for astrophysical sources of neutrinos using cascade events in IceCube

Neutrino Astronomy with IceCube at the Earth's South Pole

Gamma-ray Astrophysics

The new Siderius Nuncius: Astronomy without light

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

NEUTRINO ASTRONOMY AT THE SOUTH POLE

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM

A M A N DA Antarctic Muon And Neutrino Detector Array Status and Results

Catching Neutrinos with an IceCube

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

Neutrino Astronomy at the South Pole AMANDA and IceCube

Ultra High Energy Cosmic Rays I

Neutrino induced muons

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

A search for extremely high energy neutrino flux with the 6 years of IceCube data

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration

A Multimessenger Neutrino Point Source Search with IceCube

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

Ultra- high energy cosmic rays

Recent Observations of Supernova Remnants

Ultra High Energy Cosmic Rays: Observations and Analysis

PoS(NEUTEL2017)079. Blazar origin of some IceCube events

an introduction What is it? Where do the lectures fit in?

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer

Understanding High Energy Neutrinos

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

arxiv: v1 [astro-ph.he] 28 Jan 2013

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

Neutrino Physics: an Introduction

An Auger Observatory View of Centaurus A

The Pierre Auger Observatory Status - First Results - Plans

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope

PoS(NEUTEL2017)083. IceCube: Astrophysics Results. Christian Spiering for the IceCube Collaboration

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

neutrino astronomy francis halzen University of Wisconsin

Identifying Cosmic Ray induced Cascade events with IceTop

Searching for the Origin of Cosmic Rays with IceCube

Lessons from Neutrinos in the IceCube Deep Core Array

Recent results from the Pierre Auger Observatory

Windows on the Cosmos

Search for GeV neutrinos associated with solar flares with IceCube

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

Ultra High Energy Cosmic Rays. and

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Those invisible neutrinos

Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

Neutrino & γ-ray astronomy

Indirect Dark Matter Detection

Special Topics in Nuclear and Particle Physics

The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

Neutrino Astronomy with AMANDA

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events

Detectors for astroparticle physics

IceCube Astrophysics and Astroparticle Physics at the South Pole. 1 Introduction

Multi-Messenger Astonomy with Cen A?

Implications of recent cosmic ray results for ultrahigh energy neutrinos

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

High energy neutrino astronomy with the ANTARES Cherenkov telescope

Towards Neutrino Astronomy with IceCube+ANTARES+KM3NeT

Transcription:

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 1 Hermann Kolanoski Humboldt-Universität zu Berlin and DESY

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 2 What I want to tell you: Cosmic rays (CR) How to measure cosmic rays What we know and don t know about CR Neutrinos as messengers of cosmic accelerators Neutrino Observatory IceCube The IceCube Muppet Show... Do not talk about e.g. exotic searches (wimps, )

Cosmic Rays 100 years after their discovery not yet understood faster discharge of an electrometer with increasing height interpreted due to radiation from space: Höhenstrahlung Viktor Hess 1912 ion pairs / (cm 3 s) 5 km height Kernfragmente Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 3

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 4 Zwicky s proposal for the CR Origin In Los Angeles Times, Jan. 1934 Cosmic rays are caused by exploding stars which burn with a fire equal to 100 million suns and then shrivel from ½ million mile diameters to little spheres 14 miles thick., says Fritz Zwicky, Swiss Physicist. since then we are trying to prove it

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 5 Cosmic Ray Spectrum ~ 32 decades ~ 32 decades ~E -2.7 very different detection methods very different detector sizes LHC(p) LHC(pp) cut-off?

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 6 Cosmic Ray Spectrum ~ 32 decades ~ 32 decades ~E -2.7 very different detection methods very different detector sizes Where and how are the highest LHC(p) energies LHC(pp) produced??? What is the elemental composition? Galactic and/or extragalactic? cut-off?

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 7 Extensive Air Showers Use the atmosphere as calorimeter

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 8 IceTop 1 km 2 Air Shower Detectors IceTop distance 125 m size 1 km 2 energies PeV EeV Pierre Auger Observatory 3000 km 2 distance 1500 m size 3000 km 2 energies EeV 100 EeV

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 9 PeV to EeV The fine structure in the spectrum M.G. Aartsen et al, Physical Review D88 (2013) 042004! γ=2.65 3.14 F = E γ 2.90 3.37

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 10 Rigidity : Confinement in the Galaxy R = p z e = ρ B H O Fe 10 kpc E max ~ Z E max (Fe) 26 E max (H) CR in galaxy: mean lifetime 10 7 years Energy has to be refueled. Where, how?

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 11 Origin and Physics of the knee(s) p knee Fe knee If the knee is due to the diffusion out of the galaxy we expect a change in composition towards heavier elements spectrum below the knee: well known by direct measurements; above the knee: indirect measurements via air showers, difficult

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 12 Cosmic Ray Anisotropy 5 TeV IceCube 17 TeV The orientation of the dipole moment does not correspond to the relative motion (~200 km/s) in the Galaxy (Compton-Getting effect) Diffusive transport in galactic magnetic field from nearby sources?

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 13 Energy Dependence of CR Anisotropy 17 TeV 590 TeV 41 TeV 1.2 PeV 75 TeV 4.5 PeV 140 TeV 240 TeV Anisotropy changes in position, size Above 400 TeV there s indication of an increase in strength.

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 14 Large and Small Scale Anisotropies diffusive transport from nearby sources? observed small scale (10 ) structures few pc distance

UHECR Results Auger Observatory Cen A direction correlation with AGN? cut-off at 10 20 ev definitely observed GZK or source power limited? (GZK = Greisen-Zatsepin-Kuzmin) 28/84 = 33% isotropic background = 21% <1 % chance probability Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 15

Cosmic Rays, CMB Photons and Neutrinos Cosmic Microwave Background (CMB): perfect blackbody at 2.74 K CMB 2.7 K threshold E p 4 10 19 ev GZK horizon ~160 Mly Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 16

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 17 Nature of the Cutoff? Is this the GZK cutoff? Energy loss by collison with CMB photons? Or do accelerators run out of steam? composition becomes heavier Fe Auger: X max with florescence detectors data suggest change of composition from light to heavy Not GZK cutoff? Clarification from other messengers? Are there GZK neutrinos?

Where could particles possibly be accelerated? B Hillas diagram L E max 10 18 ev z β s (L / kpc) (B / μg) supernova remnants (SNR) gamma ray bursts (GRB) active galactic nuclei (AGN) black holes Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 18

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 19 Cosmic Accelerators Supernova Remnants (SNR) Fermi acceleration at shock front 1 % of the energy of all SN explosions can explain energy density of cosmic rays in galaxy (~ 0.5 MeV/m 3 ) Crab Nebula (explosion 1054) However: No SNR has been clearly pinned down as source

Twisted and Straight Paths Charged Particle Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 20

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 21 Absorption of γ s by γ γ -> e + e - γ γ e + e - σ γγ 1 ~ s 2m e I know! I did γ γ hadrons s

Cosmic Rays, Gammas and Neutrinos CR ν connection accelerator p π ± μ ± ν ν ν target π 0 γ γ the γ ν connection for hadron accelerators ν spectrum ~ E -2 assumed CR γ connection Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 22

Neutrino fluxes Cosmic neutrinos should have a hard spectrum E -3.7 F ~ E -2 E -2 atmospheric ν F ~ E -3.7 Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 23

How to detect cosmic high energy neutrinos? quite difficult Absorption small detection probability small large target volume Most efficient: Cherenkov light from charged ν products Mediterranean Sea Lake Baikal transparent water or ice Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 24

Amundsen Scott Station Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 25

Approaching the Pole these Days Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 26

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 27

Arriving at Pole Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 28

IceCube Neutrino Observatory air shower array IceTop neutrino telescope 86 Strings, 2450 m deep 5160 Optical Modules IceCube Instrumented: 1 km 3 IceTop: 1 km 2 DeepCore 1000 m Installation: 2005-2011 Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 29

The Drill Camp Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 30

. 2450 m deep Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 31

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 32.. what you see down there

When the Season is over Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 33

The Last Flight at the End of the Season Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 34

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 35

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 36 Detection of High Energy Neutrinos atmosph. Muons mean free path ν µ µ atmosph. Neutrinos km 10 8 10 6 10 4 10 2 1 lightyear 10 ν 12 µ +N µ + X 10 10 Radius Earth orbit Earth diameter density of Universe 10-23 ρ(h 2 O) extraterr. Neutrinos MeV GeV TeV PeV EeV ZeV Energy Earth as filter even for neutrinos the Earth becomes opaque above about 1 PeV look upward atm. background becomes less

Detecting a Neutrino Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 37

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 38

Particle Signatures up-going ν µ point sources l ± W ± X ν l Z 0 X ν l N ν l N CC NC CR shower in IceTop ν µ µ ν e cascade all flavours µ - muon tracks - em + had. shower background & physics µ bundle ν e Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 39

Search for Diffuse Astrophysical Neutrino Flux Background: Atmospheric Neutrinos ~ 100,000 events per year prompt ν s: from (semi-) leptonic decays of heavy hadrons (mainly charm). Flatter spectrum than conventional ν s large uncertainty for astro-ν s IceCube has now constrained to ~ ERS model (Enberg et al.) E -2 astrophysical? Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 40

Atmos. ν s: background for one Signal for the other Neutrino Oscillation ν μ disappearence Atmospheric Neutrinos Detector Different direction = different pass length Survival probability in the 2ν scheme E ν 10 100 GeV in DeepCore 41

Neutrino Oscillation arxiv:1410.7227 Disappearance atmospheric νμ with 3 years of data (for the normal hierarchy): sin 2 (θ23) = m 2 32 = Ultimate goal: measure mass hierarchy with a densely instrumented extension: PINGU 42

Search for Pointsources: The Method 4282 events (small sample) Source background 2-3 background: atmospheric ν Search for event excess within 2-3 somewhere in the Northern sky from list of candidate sources Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 43

The Statistics Problem If you search long enough you will for sure get an excess at some point I only believe in statistics that I doctored myself Winston Churchill Example: Expect 3 events background in a search window, but see 7. How significant is this? 0.25 <n> = 3 0.2 0.15 w(n>6) = 3,3 % 0.1 0.05 0 1 2 3 4 5 6 7 8 9 10 Already for about 30 search windows the probability to see 7 or more events in any window is about 60% for background only. Significance is determined by ~10000-fold simulation of measurement Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 44

Point Source Search 2008-2011 IC86+79+59+49 Hottest spot in South: p-value * 10-6 (pre-trial) Ra: 296.95 Dec: -75.75 N s =16.16 γ =2.34 p-value * ~ 9.3% (post-trial) * p-value for background only Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 45

Improving Statistical Significance pre-defined source positions pre-defined time-window stacking of pre-defined sources Pre-Definition with multi-messenger information of optical, gamma, X-ray, radio telescopes Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 46

Intense flashes of gamma rays Duration some seconds highly-relativistic jet ( fireball ) Search for neutrinos which are in time and direction consistent with GRB GCN: The Gamma-ray Coordinates Network Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 47

Are GRBs the main sources of Cosmic Rays? 225 GRB... no coincidences observed Standard Fireball Models excluded [Nature 484 (2012) 351] Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 48

Extremly High Energy (EHE) Neutrinos GZK threshold ~ 5 10 19 ev Search for high number of Cherenkov photons = NPE θ = zenith angle Search region upward downward up-going down-going Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 49

Search for cosmogenic neutrinos with 2010-2012 data. Aug. 8, 2011 1.04 ± 0.14 PeV deposited Jan. 3, 2012 1.14 ± 0.14 PeV energies Two shower type events found in 616 days of IceCube observations. Neutrino energies could be higher than deposited energies, if neutral current interaction. Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 50

The Muppet Show 1.04 ± 0.14 PeV 1.14 ± 0.14 PeV 2.00 ± 0.26 PeV A theoreticians view (Francis Halzen, IceCube PI) : A detection of 1 neutrino is interesting 2 is evidence and 3 is a spectrum! Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 51

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 52. Follow-up Search for contained and semi-contained events find contained events below the energy threshold of the Bert-and-Ernie analysis same dataset, 662 days of livetime Use outer IceCube layers as incoming track veto Additional atmospheric muon veto Sensitive to all flavors in region above ~ 60TeV Muon background can be estimated from data μ Veto νμ Effective volume μ

Some example events declination: -13.2 deposited energy: 82TeV declination: -0.4 deposited energy: 71TeV declination: 40.3 deposited energy: 253TeV Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 53

Excess of HE Starting Tracks Phys. Rev. Lett. 113, 101101 Significance about 5.7 σ First observation of astrophysical flux of high energy neutrinos Starting events depositing >60 TeV using 3 years of data, events up to ~2 PeV Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 54

Global Fit to 6 Different Measurements Simplest model: flux and flavor ratio Results: Flavor ratio compatible with prompt < 2 ERS Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 55

no significant correlation with galactic plane p-value: 7% Skymap equatorial coordinates Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 56

Blazars or GRB as Sources? Compare directions of the high energy ν μ with directions of Blazars observed by Fermi Satellite at high γ luminosity 17% atmost from Blazars Even more stringent for GRB: from analysis of 506 GRBs in four years it was found that no more than 1% of the high energy neutrinos could come from GRB 1% atmost from GRBs Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 57

Anything new down there? Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory

CONCLUSION? Alles Wissen und alle Vermehrung unseres Wissens endet nicht mit einem Schlußpunkt, sondern mit Fragezeichen Hermann Hesse. imagine Sisyphos to be happy» il faut imaginer Sisyphe heureux«a.camus Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 59

Coll. Ljubljana, 16. 3. 2015 H.Kolanoski - IceCube Neutrino Observatory 60