Review Problems for the Final

Similar documents
y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

MATH 162. FINAL EXAM ANSWERS December 17, 2006

Review Problems for Test 2

Review Problems for the Final

Review Sheet for the Final

Practice Final Exam Solutions

Practice Final Exam Solutions

Math 113 Fall 2005 key Departmental Final Exam

a k 0, then k + 1 = 2 lim 1 + 1

Calculus I Sample Final exam

MA 162 FINAL EXAM PRACTICE PROBLEMS Spring Find the angle between the vectors v = 2i + 2j + k and w = 2i + 2j k. C.

Note: Final Exam is at 10:45 on Tuesday, 5/3/11 (This is the Final Exam time reserved for our labs). From Practice Test I

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Math Final Exam Review

Practice problems from old exams for math 132 William H. Meeks III

Final Exam Review Quesitons

Math 162: Calculus IIA

Learning Objectives for Math 166

2t t dt.. So the distance is (t2 +6) 3/2

Math 142, Final Exam, Fall 2006, Solutions

You can learn more about the services offered by the teaching center by visiting

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

There are some trigonometric identities given on the last page.

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3

cosh 2 x sinh 2 x = 1 sin 2 x = 1 2 cos 2 x = 1 2 dx = dt r 2 = x 2 + y 2 L =

Virginia Tech Math 1226 : Past CTE problems

Review Problems for the Final

Calculus II - Fall 2013

Math 1310 Final Exam

Friday 09/15/2017 Midterm I 50 minutes

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes

Chapter 9 Overview: Parametric and Polar Coordinates

SET 1. (1) Solve for x: (a) e 2x = 5 3x

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

n=1 ( 2 3 )n (a n ) converges by direct comparison to

Math Test #3 Info and Review Exercises

Math 190 (Calculus II) Final Review

MA 114 Worksheet # 1: Improper Integrals

Final Examination Solutions

FINAL EXAM CALCULUS 2. Name PRACTICE EXAM SOLUTIONS

Practice Exam 1 Solutions

Math 230 Mock Final Exam Detailed Solution

Without fully opening the exam, check that you have pages 1 through 11.

MATH141: Calculus II Exam #1 review 6/8/2017 Page 1

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Math 142, Final Exam. 12/7/10.

Math 122 Final Review

SOLUTIONS FOR PRACTICE FINAL EXAM

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics).

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016

Mathematics 111 (Calculus II) Laboratory Manual

Math Makeup Exam - 3/14/2018

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

Review Problems for the Final

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209

Math 113 Winter 2005 Key

More Final Practice Problems

Math 323 Exam 1 Practice Problem Solutions

Math 113 (Calculus II) Final Exam KEY

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

Math 147 Exam II Practice Problems

MATH 10550, EXAM 2 SOLUTIONS. 1. Find an equation for the tangent line to. f(x) = sin x cos x. 2 which is the slope of the tangent line at

Math 20C Homework 2 Partial Solutions

Brief answers to assigned even numbered problems that were not to be turned in

MATH Final Review

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

1 Exponential Functions Limit Derivative Integral... 5

n=0 ( 1)n /(n + 1) converges, but not

THE KING S SCHOOL. Mathematics Extension Higher School Certificate Trial Examination

Final Exam 2011 Winter Term 2 Solutions

Questions Q1. The function f is defined by. (a) Show that (5) The function g is defined by. (b) Differentiate g(x) to show that g '(x) = (3)

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

Math 113/113H Winter 2006 Departmental Final Exam

Math 42: Fall 2015 Midterm 2 November 3, 2015

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Math 226 Calculus Spring 2016 Exam 2V1

MTH 133 Final Exam Dec 8, 2014

Review Problems for Test 1

MATH 2300 review problems for Exam 1 ANSWERS

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

The definite integral gives the area under the curve. Simplest use of FTC1: derivative of integral is original function.

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1

Math 1552: Integral Calculus Final Exam Study Guide, Spring 2018

1993 AP Calculus AB: Section I

Study Guide for Final Exam

University of Alberta. Math 214 Sample Exam Math 214 Solutions

5 Integrals reviewed Basic facts U-substitution... 4

Quiz 6 Practice Problems

M152: Calculus II Midterm Exam Review

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.

(b) x = (d) x = (b) x = e (d) x = e4 2 ln(3) 2 x x. is. (b) 2 x, x 0. (d) x 2, x 0

b n x n + b n 1 x n b 1 x + b 0

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test

Math 152 Take Home Test 1

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Transcription:

Review Problems for the Final Math -3 5 7 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence of a topic does not imply that it won t appear on the test.. Compute the following integrals. a) e x cosx. b) x x. c) 5x 6x 5 x ) x+). d) sinx) 3 cosx). e) sinx) cosx). f). 3 x x ) 3/ 3x +7x+ g) x+)x +). h) x+) e 5x. x / x / i). x / +x/. Determine whether the integral converges. 3. Prove by comparison that converges or diverges. Find the value of the integral if it x x converges. +. The region between the x-axis and y = x from x = to x = is revolved about the line x =. Find the volume generated. 5. Let R be the region bounded above by y = x+, bounded below by y = x, and bounded on the sides by x = and by the y-axis. Find the volume of the solid generated by revolving R about the line x =. 6. Find the area of the region which lies between the graphs of y = x and y = x+, from x = to x = 3. 7. Find the area of the region between y = x+3 and y = 7 x from x = to x = 3. 8. The base of a solid is the region in the x-y-plane bounded above by the curve y = e x, below by the x-axis, and on the sides by the lines x = and x =. The cross-sections in planes perpendicular to the x-axis are squares with one side in the x-y-plane. Find the volume of the solid.

9. A tank built in the shape of the bottom half of a sphere of radius feet is filled with water. Find the work done in pumping all the water out of the top of the tank.. Does the following series converge absolutely, converge conditionally, or diverge?. Determine whether the series n+ ) n+ n converges absolutely, converges conditionally, or di- + verges.. Does the series 3 + + 9 3 3 + 6 3 + + n= ) 3 ) n+ converge absolutely, converge conditionally, or diverge? n+ n= 3. Find the sum of the series 5 9 5 7 + 5 8 5 3 +.. In each case, determine whether the series converges or diverges. a) n= nlnn) /3. b) + 5 5 3n ) + + 5 5 n 3). c) n= + ) n. n d) 3 5 8 + 8 3 8 +. 3n +n+ e) n5 +6. f) g) h) n= n= 5+cose n ). n ne n. n= k= k + k k 3 + ) k. 5. Find the values of x for which the following series converges absolutely. n= n!) n)! x 5)n 6. The series ) k+ converges by the Alternating Series Test. Determine the smallest value k /3 + k= n of n for which the partial sum ) k+ approximates the actual sum to within.. k /3 + k=

7. a) Find the Taylor expansion at c = for e x. b) Find the Taylor expansion at c = for. What is the interval of convergence? 3+x 8. a) Use the Binomial Series to write out the first three nonzero terms of the series for t ) /. t = b) Find the first three terms of the Taylor series at c = for sin x by integrating the series you got in a) from t = to x = x. 9. Use the Remainder Term to find the minimum number of terms of the Taylor series at c = for fx) = e 5x needed to approximate fx) on the interval x.3 to within. = 5.. Determine the interval of convergence of the power series. Find the interval of convergence of the power series. If x = t+e t and y = t+t 3, find dy and d y at t =. 3. Consider the parametric curve a) Find the equation of the tangent line at t =. b) Find d y at t =.. Find the length of the loop of the curve n= n= x 3) n n n ) 3. x = t +t+, y = t 3 5t+. x 3) n n 7 n. x = t, y = t t3 3. 5. Find the length of the curve y = x + for x. 6. Let 3 x = t, y = t t3. Find the length of the arc of the curve from t = to t =. 7. Find the area of the surface generated by revolving y = 3 x3/ x/, x, about the x-axis. 8. Find the area of the surface generated by revolving y = 3 x3, x, about the x-axis. 9. a) Convert x 3) +y +) = 5 to polar and simplify. b) Convert r = cosθ 6sinθ to rectangular and describe the graph. 3. Find the slope of the tangent line to the polar curve r = sinθ at θ = π 6. 3. Find the slope of the tangent line to r = +cosθ at θ = π 6. 3

3. Find the values of θ in the interval [,π] for which the polar curve r = cosθ sinθ passes through the origin. 33. Find the length of the cardioid r = +sinθ. 3. Find the area of the intersection of the interiors of the circles x +y ) = and x 3) +y = 3. 35. Find the area of the region inside the cardioid r = +cosθ and outside the circle r = 3cosθ. 36. Let A be the region inside r = sinθ and let B be the region inside r = 3cosθ. Find the area of the intersection of A and B that is, the area of the region common to A and B.. Compute the following integrals. a) e x cosx. b) c) x x. 5x 6x 5 x ) x+). d) sinx) 3 cosx). e) sinx) cosx). f) 3 x x ) 3x +7x+ g) x+)x +). h) x+) e 5x. Solutions to the Review Problems for the Final 3/. x / x / i). x / +x/ a) d + e x cosx ց e x sinx ց + e x cosx

e x cosx = ex sinx+ ex cosx e x cosx, 5 e x cosx = ex sinx+ ex cosx, e x cosx = 5 ex sinx+ 5 ex cosx+c. b) x = x sinθ) cosθdθ = sinθ) sinθ) cosθdθ = sinθ) dθ = cosθ) [x = sinθ, = cosθdθ] x - x cosθ)dθ = θ ) sinθ +C = θ sinθcosθ)+c = sin x x x +C. c) 5x 6x 5 x ) x+) = a x + b x ) + c x+, 5x 6x 5 = ax )x+)+bx+)+cx ). Setting x = gives 6 = 3b, so b =. Setting x = gives 7 = 9c, so c = 3. Therefore, 5x 6x 5 = ax )x+) x+)+3x ). Setting x = gives 5 = a +3, so a =. Thus, 5x 6x 5 x ) x+) = x x ) + 3 ) = ln x + x+ x +3ln x+ +C. d) sinx) 3 cosx) = cosx) sinx) cosx) sinx) = ) cosx) sinx) = u )u sinx) [ ] du u = cosx, du = sinx, = sinx ) du = u u )du = sinx 5 cosx)5 ) 3 cosx)3 +C. 5 u5 3 u3 ) +C = e) sinx) cosx) = cos8x) +cos8x) = cos8x) ) = sin8x) = 5

cos6x) = x ) 8 8 6 sin6x +C. f) I need to complete the square. Note that = and ) =. Then 3 x x = x +x+3) = x +x+ ) = [ x+) ] = x+). So = 3 x x ) 3/ = x+) ) 3/ sinθ) ) 3/cosθdθ) = cosθ) 3cosθdθ) = [x+ = sinθ, = cosθdθ] x + g) Let x =. I get Then Let x =. I get Then Let x =. I get - x + ) cosθ) dθ = secθ) x+ dθ = tanθ +C = +C. 3 x x 3x +7x+ x+)x +) = a x+ + bx+c x + 3x +7x+ = ax +)+bx+c)x+) + = 5a, 5 = 5a, so a = 5. 3x +7x+ = 5x +)+bx+c)x+). ++ = 5+c, 6 = c, so c = 3. 3x +7x+ = 5x +)+bx+3)x+). 3+7+ = +b+3)3), 5 = +3b+9, 6 = 3b, so b =. Thus, 3x +7x+ 5 x+)x +) = x+ + x x + + 3 ) x + = 5ln x+ +lnx +)+3tan x+c. h) d + x+) e 5x x+) + 6 5 e5x 5 e5x 5 e5x

i) x+) e 5x = 5 x+) e 5x 5 x+)e5x + 5 e5x +C. x / x / u u u u u 3 = x / +x/ u +u u3 du) = u+ u3 du = u+ du. [ x = u, = u 3 du ] Use long division to divide u u 3 by u+: 3 u - u + u - 3 u+ u - u 3 - u + u -u 3 3 --u - u u - u + u -u - -u- Thus, u+ du = u 3 u +u + ) du = u+ u ) 3 u3 +u u+ln u+ +C = u u 3 x 3 x3/ +x / x / +ln x / + ) +C.. Determine whether the integral converges. converges or diverges. Find the value of the integral if it x x = x + a = + x a x b + b x = [ln x ] a a + [ln x ] b + b = ln a ln)+ ln ln b ) = ln a + ln b ). a b + a b + a ln a = and + ln b ) = +, so the integral diverges. b 3. Prove by comparison that Since x + for x, x Since x + x converges. + a = x a converges, the original integral converges as well. x [ = ] a x a 3x 3 = a 3a 3 + ) = 3 3. 7

. The region between the x-axis and y = x from x = to x = is revolved about the line x =. Find the volume generated. Use shells. The height of a shell is h = x, and the radius is r = +x. The volume is π+x)x ) = π [ x +x 3 ) = π 3 x3 + ] x = 6π 3 6.7556. 5. Let R be the region bounded above by y = x+, bounded below by y = x, and bounded on the sides by x = and by the y-axis. Find the volume of the solid generated by revolving R about the line x =. x = h = x + ) + x h -x r = - x Most of the things in the picture are easy to understand but why is r = x? Notice that the distance from the y-axis to the side of the shell is x, not x. Reason: x-values to the left of the y-axis are negative, but distances are always positive. Thus, I must use x to get a positive value for the distance. As usual, r is the distance from the axis of revolution x = to the side of the shell, which is + x) = x. The left-hand cross-section extends from x = to x =. You can check that if you plug x s between and into r = x, you get the correct distance from the side of the shell to the axis x =. The volume is V = π x)x+)+x ) = π = π x x 3) [ = π x x ] x = π 6.8385. 6. Find the area of the region which lies between the graphs of y = x and y = x+, from x = to x = 3. 8

8 6 3 As the picture shows, the curves intersect. Find the intersection point: x = x+, x x =, x )x+) =, x = or x =. On the interval x 3, the curves cross at x =. I ll use vertical rectangles. From x = to x =, the top curve is y = x+ and the bottom curve is y = x. From x = to x = 3, the top curve is y = x and the bottom curve is y = x+. The area is A = x+) x ) 3 + x x+) ) = 3. 7. Find the area of the region between y = x+3 and y = 7 x from x = to x = 3. 7 6 5 3-3 As the picture shows, the curves intersect. Find the intersection point: x+3 = 7 x, x =, x =. I ll use vertical rectangles. From x = to x =, the top curve is y = 7 x and the bottom curve is y = x+3. From x = to x = 3, the top curve is y = x+3 and the bottom curve is y = 7 x. The area is 7 x) x+3)) + 3 x+3) 7 x)) = [ x x ] +[ x x ] 3 = + = 5. x)+ 3 x ) = 9

8. The base of a solid is the region in the x-y-plane bounded above by the curve y = e x, below by the x-axis, and on the sides by the lines x = and x =. The cross-sections in planes perpendicular to the x-axis are squares with one side in the x-y-plane. Find the volume of the solid. x,) y The volume is V = e x ) = e x = [ ] ex = e ) 3.953. 9. A tank built in the shape of the bottom half of a sphere of radius feet is filled with water. Find the work done in pumping all the water out of the top of the tank. y x y r dy - I ve drawn the tank in cross-section as a semicircle of radius extending from y = to y =. Divide the volume of water up into circular slices. The radius of a slice is r = y, so the volume of a slice is dv = πr dy = π y )dy. The weight of a slice is 6.π y )dy, where I m using 6. pounds per cubic foot as the density of water. To pump a slice out of the top of the tank, it must be raised a distance of y feet. The - is necessary to make y positive, since y is going from to.) The work done is [ ] W = 6.π y) y )dy = 6.π y 3 y)dy = 6.π y y = 9.6π 78.53 foot pounds.

. Does the following series converge absolutely, converge conditionally, or diverge? 3 + + 9 3 3 + 6 3 + + The absolute value series is Note that when n is large, 3 + + 9 3 3 + 6 3 + + = ) n+ n n 3 +. Hence, I ll compare the series to n= n. n n= n n 3 + n n n 3 +. n n 3 + n. n= n 3 = n n 3 + =. The it is finite ) and positive > ). The harmonic series n= diverges. By Limit Comparison, the series n n n= n 3 diverges. Hence, the original series does not converge absolutely. + Returning to the original series, note that it alternates, and n n n 3 + =. Let fn) = n n 3 +. Then f n) = n n3 ) +n 3 < for n >. ) Therefore, the terms of the series decrease for n, and I can apply the Alternating Series Rule to conclude that the series converges. Since it doesn t converge absolutely, but it does converge, it converges conditionally.. Determine whether the series converges absolutely, converges conditionally, or diverges. The absolute value series is n= n+ ) n+ n + n= n+ n +. n n+ n + n 3/ n +n 3/ = n n =. +

n converges because it s a p-series with p = 3 3/ >. n= The absolute value series converges by it comparison. The original series converges absolutely.. Does the series n ) 3 ) n+ converge absolutely, converge conditionally, or diverge? n+ n= Consider the absolute value series n+ ) 3 n 3/ n= n+ ) 3. ) 3 ) 3 ) n = n n3/ = n+ n n/ ) 3 / 3 = = 3 =. n+ n n / + n converges, because it s a p-series with p = 3 >. Hence, the absolute value series converges 3/ n= by Limit Comparison. Therefore, the original series converges absolutely. 3. Find the sum of the series 5 9 5 7 + 5 8 5 3 +. 5 9 5 7 + 5 8 5 3 + = 5 9 3 + 9 ) 7 + = 5 9 ) = 5 9 3 = 5. 3. In each case, determine whether the series converges or diverges. a) n= nlnn) /3. b) + 5 5 3n ) + + 5 5 n 3). c) n= + ) n. n d) 3 5 8 + 8 3 8 +. 3n +n+ e) n5 +6. f) n= n= 5+cose n ). n

g) h) ne n. n= k= k + k k 3 + ) k. a) Apply the Integral Test. The function fn) = [,+ ). Note that is positive and continuous on the interval nlnn) /3 f n) = 3n lnn) 7/3 n lnn) /3. It follows that f n) < for n. Hence, f decreases on the interval [,+ ). The hypotheses of the Integral Test are satisfied. Compute the integral: p dn = dn = nlnn) /3 p nlnn) /3 [ 3 p lnn) /3 ] p ) = 3 p lnp) /3 ln) /3 To do the integral, I substituted u = lnn, so du = n dn.) Since the integral converges, the series converges by the Integral Test. b) Apply the Ratio Test. The n th term of the series is Hence, the n+)-st term is Hence, a n = 5 3n ) 5 n 3). a n+ = 5 3n ) 3n+) ) 5 n 3) n+) 3). = 3 ln) /3. a n+ a n = 5 3n ) 3n+) ) 5 n 3) n+) 3) 5 n 3) 5 3n ) = 3n+) ) n+) 3) = 3n+ n+. The iting ratio is 3n+ n n+ = 3. The it is less than, so the series converges, by the Ratio Test. c) Apply the Root Test. a /n n = + n) n. The it is + n { = + n n) n } { = + n n) n } = e n n). Since e = e <, the series converges, by the Root Test. 3

d) Note that +3n n 3+5n = 3 5. It follows that n a n is undefined the values oscillate, approaching ± 3. Since, in particular, the 5 it is nonzero, the series diverges, by the Zero Limit Test. e) Apply Limit Comparison: n 3n +n+ n5 +6 n 3n 5/ +n 3/ +n / = = 3. n n5 +6 The it is finite and positive. The series n= Therefore, the original series diverges by Limit Comparison. n diverges, because it s a p-series with p = <. f) cose n ) 5+cose n ) 6 5+cosen ) 6 n n n n diverges, because it s times the harmonic series. Therefore, n= n= Comparison. 5+cose n ) n diverges by Direct g) The series has positive terms. fx) = xe x is continuous for x. Compute the derivative: f x) = xe x +e x = x)e x. e x > for all x, and x < for x. Therefore, f x) < for x. Hence, fx) decreases for x. The three conditions for applying the Integral Test are satisfied. Compute the integral: xe x = a a [ xe x = a xe x ] a e x = a ae a e a + e + ) e = + 3 e = 3 e. Here s the work for the integral: d + x e x ց + ց e x e x xe x = xe x e x +C.

Here s the work for the two its. I used L Hôpital s Rule to compute the first it. a ae a = a a e a = a a e a = =. a ea Since the integral converges, the series converges by the Integral Test. h) This is not an alternating series, even though it contains a ) k! =. ea The series looks like for large k; use Limit Comparison. The iting ratio is k k= k The it is nonzero and finite. k + k k 3 + ) k k k= k + k k 3 converges by Limit Comparison. + ) k k 3 +k 5/ = k k 3 + ) k =. converges, because it s a p-series with p = >. Therefore, k 5. Find the values of x for which the following series converges absolutely. n= n!) n)! x 5)n Apply the Ratio Test: a n+ a n = n+)!) n+))! x 5 n+ n!) n)! x 5 n n+)! = n! ) n)! x 5 n+ n+)! x 5 n = n+) n+)n+) x 5. The iting ratio is n n+) n+)n+) x 5 = x 5. The series converges absolutely for x 5 <, i.e. for < x < 9. The series diverges for x < and for x > 9. You ll probably find it difficult to determine what is happening at the endpoints! However, if you experiment compute some terms of the series for x = 9, for instance you ll see that the individual terms are growing larger, so the series at x = and at x = 9 diverge, by the Zero Limit Test. 6. The series ) k+ converges by the Alternating Series Test. Determine the smallest value k /3 + k= n of n for which the partial sum ) k+ approximates the actual sum to within.. k /3 + k= 5

The error in approximating the exact value of the sum by term, which is. So I want n+) /3 + n ) k+ k /3 + k= is less than the n+)st n+) /3 + <. < n+) /3 + 98 < n+) /3 99 < n+ 99 < n Take n = 99. 7. a) Find the Taylor expansion at c = for e x. b) Find the Taylor expansion at c = for a) b). What is the interval of convergence? 3+x e x = e x )+ = e e x ) = e +x )+ x ) 3+x = +x ) = x + The series converges for < x! + 3 x ) 3 3! + x = x ) = ) ) 3 x x + ). <, i.e. for 3 < x < 5. ) +. 8. a) Use the Binomial Series to write out the first three nonzero terms of the series for t ) /. t = b) Find the first three terms of the Taylor series at c = for sin x by integrating the series you got in a) from t = to x = x. a) b) sin x = x t ) / dt = t ) / = + t + 3 8 t +. x + t + 3 ) 8 t + dt = x+ 6 x3 + 3 x5 +. 9. Use the Remainder Term to find the minimum number of terms of the Taylor series at c = for fx) = e 5x needed to approximate fx) on the interval x.3 to within. = 5. 6

First, I ll find the Remainder Term. Hence, for some z between and x, I want R n x;) < 5. Since x.3, I have f x) = 5e 5x, f x) = 5 e 5x,...,f n) x) = 5 n e 5x. R n x;) = 5n+ e 5z n+)! xn+. x n+.3 n+. Moreover, since z is between and x and x.3, I also have z.3. So Therefore, z.3 5z.5 e e 5z e.5 R n x;) = 5n+ e 5z n+)! x n+ 5n+ e.5 n+)!.3)n+. Therefore, I want the smallest value of n such that 5 n+ e.5 n+)!.3)n+ < 5. This inequality can t be solved algebraically, due to the factorial in the denominator. So I have to do this by trial and error. 5 n+ e.5 n n+)!.3)n+ The smallest value of n that works is n =. 7.8... 8.7788... 9 7.8... 5 9.757... 6. Determine the interval of convergence of the power series n x 3 n+ n+) 7 n+ x 3 n n 7 n n= x 3) n n 7 n. = n 7 n n+ x 3 = 7 x 3. By the Ratio Test, the series converges for x 3 <. Hence, the base interval is : < x <. 7 At x =, the series is. It diverges, because it s harmonic. n n= 7

) n At x =, the series is. It converges, because it s alternating harmonic. n n= The interval of convergence is x <.. Find the interval of convergence of the power series Apply the Ratio Test to the absolute value series: n x 3 n+ n+) n+ ) 3 x 3 n n n ) 3 = n n= x 3) n n n ) 3. ) n n 3 x 3 n+ n+ n+ x 3 n = n n n+ 8 x 3 = 8 x 3. The series converges for x 3 <, i.e. for 5 < x <. 8 At x =, the series is It s harmonic, so it diverges. At x = 5, the series is n= n= 8 n n n ) 3 = 8) n n n ) 3 = n= n= n. ) n n. This is the alternating harmonic series, so it converges. Therefore, the power series converges for 5 x <, and diverges elsewhere.. If x = t+e t and y = t+t 3, find dy and d y at t =. When t =, dy = +e. d y = d When t =, d y = 6+e +e) 3. ) dy = dy = ) dt d dt dy dt dt = +3t +e t. )) dy = d dt ) dy = dt d +3t dt +e t +e t = +e t )6t) +3t )e t ) +e t ) +e t = +et )6t) +3t )e t ) +e t ) 3. 3. Consider the parametric curve x = t +t+, y = t 3 5t+. 8

a) Find the equation of the tangent line at t =. b) Find d y at t =. a) dy = dy dt dt = 3t 5 t+. When t =, x = 3, y =, and dy =. The equation of the tangent line is 3 y + = 3 x 3). b) d y = d dt ) dy = dt When t =, d y = 7. d dt 3t ) 5 t+ = t+ t+)6t) 3t 5)) t+) t+ = 6t +6t+ t+) 3.. Find the length of the loop of the curve x = t, y = t t3 3..6.. -. -. -.6 3 I ll do the easy part first, which is to find the integrand for the arc length. It is ) + dt ) dy = t) dt + t ) = t +t t +) = +t +t = +t ) = +t. Note that since t ) = t t +, you know that t +t + = t +).) To find the its of integration, I have to find two values of t which give the same values of x and y. The loop is traced out between these its. ) Note that x = t is the same for t and t, because of the square. Note also that y = t t, so 3 y = for t = and t = ± 3. Therefore, the values t = ± 3 make y =, and since they re negatives of one another they give the same x-value. In other words, they give the same point on the curve. Thus, the loop is traced out from t = 3 to t = 3. 9

The length is L = 3 +t )dt = [t+ 3 ] 3 t3 3 3 = 3 6.98. 5. Find the length of the curve y = x + for x..5.5 The length is L = +x = +...6.8 dy = x, ) dy = +x, ) dy = x, + ) dy = +x. [ x +x + ] ln +x +x = + ln +).779. Here s the work for the integral: +x +tanθ) secθ) = secθ) dθ = secθ) dθ = secθ) 3 dθ = + x [ x = tanθ, = secθ) dθ ] x secθtanθ + ln secθ +tanθ +C = x +x + ln +x +x +C. 6. Let x = 3 t, y = t t3. Find the length of the arc of the curve from t = to t =. dt = 3t and dy dt = 3 t.

Hence, ) + dt ) dy = 3t + 3 ) dt t = 3t + 3 t + 9 6 t = + 3 t + 9 6 t = + 3 ) t. Therefore, The length is ) + dt + 3 ) t dt = ) dy = + 3 dt t. [ t+ t3 ] = 8. 7. Find the area of the surface generated by revolving y = 3 x3/ x/, x, about the x-axis. - - - Hence, 3 - y = x / x /, so y ) = x + 6x. +y ) = x+ + 6x. Notice that this is just y ) with the sign of the middle term changed. But y ) was x / x / squared, so +y ) must be x / + squared: x/ S = Thus, The area is +y ) = x / + ). x / +y ) = x / + x /. π 3 x3/ ) x/ x / + ) = π x / 89π 69.9. 3 x 3 x ) [ x 3 = π 8 9 x 6 x ] = 8

.5 8. Find the area of the surface generated by revolving y = 3 x3, x, about the x-axis. - -.5 The derivative is dy = x, so dy ) + = x +. The curve is being revolved about the x-axis, so the radius of revolution is R = y = 3 x3. The area of the surface is S = ) x π 3 x3 + = π 3 7 [ u = x +, du = x 3, = du x ) du u / x 3 x 3 = π 6 π ) 7 3/.79.a 9 7 u / du = π 6 ] 3; x =,u =, x =,u = 7 [ ] 7 3 u3/ = 9. a) Convert x 3) +y +) = 5 to polar and simplify. b) Convert r = cosθ 6sinθ to rectangular and describe the graph. a) b) x 3) +y +) = 5, x 6x+9+y +8y +6 = 5, x +y = 6x 8y, r = 6rcosθ 8rsinθ, r = 6cosθ 8sinθ. r = cosθ 6sinθ, r = rcosθ 6rsinθ, x +y = x 6y, x x+y +6y =, x x++y +6y +9 = 3, x ) +y +3) = 3. - 3 5 - - -3 - -5-6

The graph is a circle of radius 3 centered at, 3). 3. Find the slope of the tangent line to the polar curve r = sinθ at θ = π 6. When θ = π 6, r = sin π 3 3 = dr. Since dθ = cosθ, when θ = π 6, dr dθ = cos π 3 =. The slope of the tangent line is ) ) ) 3 3 dr + ) dy rcosθ +sinθ = dθ rsinθ +cosθ dr = ) ) ) = 5 3.88675. 3 3 3 dθ + ) 3. Find the slope of the tangent line to r = +cosθ at θ = π 6. First, dr dθ = sinθ. When θ = π 3 6, r = + dr and dθ =. Therefore, ) ) 3 3 dr + + dy rcosθ +sinθ) = dθ rsinθ +cosθ) dr = ) ) 3 3 dθ + + ) ) ) ) = 3+.965. 3+ 3. Find the values of θ in the interval [,π] for which the polar curve r = cosθ sinθ passes through the origin..5 - -.5.5 -.5 - Set r = : cosθ sinθ =, cosθ = sinθ, = tanθ. I ll solve tanu =. Since the argument of the equation above is θ, I need solutions in the range u π = π. By basic trigonometry, Thus, the solutions are tan π =, tan 5π =, tan 9π =, tan 3π =. u = π, u = 5π, u = 9π, u = 3π. 3

Set u = θ and solve for θ: θ = π, θ = 5π, θ = 9π, θ = 3π, θ = π 8, θ = 5π 8, θ = 9π 8, θ = 3π 8. 33. Find the length of the cardioid r = +sinθ. r + ) dr = +sinθ) +cosθ) = +sinθ +sinθ) +cosθ) = +sinθ. dθ By the double angle formula, sin θ ) = +sinθ) sin ) θ = +sinθ) sin ) θ = +sinθ Thus, The length is π r + r + ) dr = sin θ ) dθ ) dr = sin θ dθ sin θ [ dθ = cos θ ] π = 8. 3. Find the area of the intersection of the interiors of the circles x +y ) = and x 3) +y = 3. Convert the two equations to polar: x +y y + =, x +y = y, r = rsinθ, r = sinθ. x 3) +y = 3, x 3x+3+y = 3, x +y = 3x, r = 3rcosθ, r = 3cosθ..5.5-3 -.5 - -.5

Set the equations equal to solve for the line of intersection: sinθ = 3cosθ, tanθ = 3, θ = π 3. The region is orange-slice -shaped, with the bottom/right half bounded by r = sinθ from θ = to θ = π 3 and the top/left half bounded by r = 3cosθ from θ = π 3 to θ = π. Hence, the area is A = π/3 π/3 π/ sinθ) dθ + π/3 3cosθ) dθ = cosθ)dθ +3 π/ π/3 π/3 sinθ) dθ +6 +cosθ)dθ = [θ + ] π/3 sinθ 5 6 π 3.8859. π/ π/3 cosθ) dθ = +3 [θ + ] π/ sinθ = π/3 35. Find the area of the region inside the cardioid r = +cosθ and outside the circle r = 3cosθ..5.5 r= + cos.5.5.5 3 -.5 - -.5 r=3 cos Find the intersection points: 3cosθ = +cosθ, cosθ =, cosθ =, θ = ±π 3. I ll find the area of the shaded region and double it to get the total. The shaded area is cardioid area from π ) 3 to π circle area from π 3 to π ). The cardioid area is π π/3 +cosθ) dθ = The circle area is π/ π/3 π π/3 +cosθ +cosθ) ) dθ = π π/3 [ θ +sinθ + θ + )] π sinθ = π π/3 9 3. 6 3cosθ) dθ = 9 π/ π/3 +cosθ + ) +cosθ) dθ = +cosθ)dθ = 9 [θ + ] π/ sinθ = 3π π/3 8 9 3. 6 5

Thus, the shaded area is The total area is π 8 = π.785. π 9 ) 3π 3 6 8 9 ) 3 = π 6 8. 36. Let A be the region inside r = sinθ and let B be the region inside r = 3cosθ. Find the area of the intersection of A and B that is, the area of the region common to A and B. r = sin Find the intersection point: r = 3 cos sinθ = 3cosθ, tanθ = 3, θ = π 3. The circles also intersect at the origin, but they pass through the origin at different values of θ.) The shaded area is the sum of the area inside r = sinθ from θ = to θ = π 3 r = 3cosθ from θ = π 3 to θ = π : A = π/3 and the area inside π/ sinθ) dθ + π/3 3cosθ) dθ = π/3 cosθ)dθ + 3 π/ π/3 +cosθ)dθ = [θ ] π/3 sinθ + 3 [θ + ] π/ sinθ = 5 π/3 π 3.9. The best thing for being sad is to learn something. - Merlyn, in T. H. White s The Once and Future King c 7 by Bruce Ikenaga 6