Theory of Machines and Automatic Control Winter 2018/2019

Similar documents
Homework 7 - Solutions

ECE317 : Feedback and Control

Control System Design

Systems Analysis and Control

ECE 486 Control Systems

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

Systems Analysis and Control

Control System Design

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year

Systems Analysis and Control

Outline. Control systems. Lecture-4 Stability. V. Sankaranarayanan. V. Sankaranarayanan Control system

Software Engineering/Mechatronics 3DX4. Slides 6: Stability

Remember that : Definition :

Controls Problems for Qualifying Exam - Spring 2014

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

ECE317 : Feedback and Control

Boise State University Department of Electrical Engineering ECE461 Control Systems. Control System Design in the Frequency Domain

Design Methods for Control Systems

Robust Control 3 The Closed Loop

Nyquist Stability Criteria

Control Systems Engineering ( Chapter 6. Stability ) Prof. Kwang-Chun Ho Tel: Fax:

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

The Nyquist criterion relates the stability of a closed system to the open-loop frequency response and open loop pole location.

Control System Design

Analysis of SISO Control Loops

University of Science and Technology, Sudan Department of Chemical Engineering.

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Andrea Zanchettin Automatic Control AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear systems (frequency domain)

ECE317 : Feedback and Control

Stability Analysis Techniques

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions

Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

STABILITY OF CLOSED-LOOP CONTOL SYSTEMS

Some special cases

Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.

ECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =

Analysis and Design of Analog Integrated Circuits Lecture 12. Feedback

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard

Control Systems. EC / EE / IN. For

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

Digital Control Systems

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Control Systems I. Lecture 9: The Nyquist condition

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Asymptotic Bode Plot & Lead-Lag Compensator

Control Systems. University Questions

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version

Course Summary. The course cannot be summarized in one lecture.

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Control Systems Design

The stability of linear time-invariant feedback systems

Lecture 15 Nyquist Criterion and Diagram

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

Data Based Design of 3Term Controllers. Data Based Design of 3 Term Controllers p. 1/10

Frequency Response Techniques

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

MAS107 Control Theory Exam Solutions 2008

I Stable, marginally stable, & unstable linear systems. I Relationship between pole locations and stability. I Routh-Hurwitz criterion

MAE 143B - Homework 9

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

CDS 101/110 Homework #7 Solution

Robust and Optimal Control, Spring A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization

Stability of CL System

Course Outline. Closed Loop Stability. Stability. Amme 3500 : System Dynamics & Control. Nyquist Stability. Dr. Dunant Halim

CONTROL * ~ SYSTEMS ENGINEERING

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Process Control & Instrumentation (CH 3040)

Definition of Stability

Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Automatic Control Systems

Control Systems I. Lecture 9: The Nyquist condition

(a) Find the transfer function of the amplifier. Ans.: G(s) =

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

Plan of the Lecture. Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

FEL3210 Multivariable Feedback Control

Lecture plan: Control Systems II, IDSC, 2017

Control Systems. Root Locus & Pole Assignment. L. Lanari

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Input-output Controllability Analysis

Review: stability; Routh Hurwitz criterion Today s topic: basic properties and benefits of feedback control

Feedback Control of Linear SISO systems. Process Dynamics and Control

FEEDBACK and CONTROL SYSTEMS

Exam. 135 minutes, 15 minutes reading time

Compensation 8. f4 that separate these regions of stability and instability. The characteristic S 0 L U T I 0 N S

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs

Table of Laplacetransform

Control System Design

EECE 460 : Control System Design

Outline. Classical Control. Lecture 1

Cascade Control of a Continuous Stirred Tank Reactor (CSTR)

Chapter 6 - Solved Problems

EC CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING

Transcription:

Theory of Machines and Automatic Control Winter 2018/2019 Lecturer: Sebastian Korczak, PhD, Eng. Institute of Machine Design Fundamentals - Department of Mechanics http://www.ipbm.simr.pw.edu.pl/

Lecture 13 Stability criteria. Gain margin and phase margin. System correction. 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 2

STABILITY CRITERIA General stability criterion Hurwitz criterion Nyquist stability criterion 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 3

General stability criterion LTI SISO system is assymptotically stable if real part of every pole of the system's transfer function is less than zero. G= (s z 1)(s z 2 )...(s z m ) ( s p 1 )(s p 2 )...(s p n ) Re p 1 <0 Re p 2 <0... Re p n <0 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 4

Hurwitz criterion mathematics a necessary and sufficient condition whether all the roots of the polynomial are in the left half of the complex plane 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 5

Hurwitz criterion mathematics control theory a necessary and sufficient condition whether all the roots of the polynomial are in the left half of the complex plane a necessary and sufficient condition whether all the poles of transfer function of a linear system have negative real parts 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 6

Hurwitz criterion LTI SISO system with a transfer function H = b m s m +b m 1 s m 1 +...+b 1 s+b 0 a n s n +a n 1 s n 1 +...+a 1 s+a 0 = (s z 1)(s z 2 )...(s z m ) (s p 1 )(s p 2 )...(s p n ) is stable if: 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 7

Hurwitz criterion LTI SISO system with a transfer function H = b m s m +b m 1 s m 1 +...+b 1 s+b 0 a n s n +a n 1 s n 1 +...+a 1 s+a 0 = (s z 1)(s z 2 )...(s z m ) (s p 1 )(s p 2 )...(s p n ) is stable if: 1 a n >0, a n 1 >0,..., a 1 >0, a 0 >0 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 8

Hurwitz criterion LTI SISO system with a transfer function H = b m s m +b m 1 s m 1 +...+b 1 s+b 0 a n s n +a n 1 s n 1 +...+a 1 s+a 0 = (s z 1)(s z 2 )...(s z m ) (s p 1 )(s p 2 )...(s p n ) is stable if: 1 a n >0, a n 1 >0,..., a 1 >0, a 0 >0 2 M n =[ a n 1 a n 0 0 0 0 a n 3 a n 2 a n 1 a n 0 0 a n 5 a n 4 a n 3... 0]...... 0 0 0 a 0 a 1 a 2 0 0 0 0 0 a 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 9

Hurwitz criterion LTI SISO system with a transfer function H = b m s m +b m 1 s m 1 +...+b 1 s+b 0 a n s n +a n 1 s n 1 +...+a 1 s+a 0 = (s z 1)(s z 2 )...(s z m ) (s p 1 )(s p 2 )...(s p n ) is stable if: 1 2 Δ i a n >0, a n 1 >0,..., a 1 >0 =[, a 0 >0 det Δ 2 >0 det Δ 3 >0... M n det Δ n 1 >0 - leading principal minor of order i Δ 2 Δ 3 Δ n 1 a n 1 a n 0 0 0 0 a n 3 a n 2 a n 1 a n 0 0 a n 5 a n 4 a n 3... 0]...... 0 0 0 a 0 a 1 a 2 0 0 0 0 0 a 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 10

Hurwitz criterion Hurwitz criterion Routh criterion (1895) (1876) Liénard Chipart criterion modification of Hurwitz criterion 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 11

Hurwitz criterion Example 1 G= 5 s+3 10 s 2 +3 s+1 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 12

G= 2 s 2 s 3 +s+20 Hurwitz criterion Example 2 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 13

G= 3 s 5 s 3 +4 s 2 +3 s+10 Hurwitz criterion Example 3 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 14

G= 1 3 s 4 +4 s 3 +6 s 2 +4 s+5 Hurwitz criterion Example 4 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 15

k s 4 s 3 +3 s 2 +k s+1 Hurwitz criterion Example 5 Choose k parameter to satisfy Hurwitz criterion 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 16

Hurwitz criterion Example 6 Choose k parameter to satisfy Hurwitz criterion 2 2 s 3 +ks 2 +(1+k ) s+3 Homework 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 17

Hurwitz criterion Example 7 Choose T parameter to satisfy Hurwitz criterion G r = 4 s T s+1 1 G o = s 3 +2 s 2 +s+1 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 18

G z = Hurwitz criterion Example 7 Choose T parameter to satisfy Hurwitz criterion G r = 4 s T s+1 1 G o = s 3 +2 s 2 +s+1 G r G o 1+G r G o G p = 4 s a 4 s 4 +a 3 s 3 +a 2 s 2 +a 1 s+a 0 a 4 =T, a 3 =2 T +1, a 2 =T +2, a 1 =T +5, a 0 =1 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 19

G z = Hurwitz criterion Example 7 Choose T parameter to satisfy Hurwitz criterion G r = 4 s T s+1 1 G o = s 3 +2 s 2 +s+1 G r G o 1+G r G o G p = a 4 >0, a 3 >0, a 2 >0, a 1 >0, a 0 >0 T >0 4 s a 4 s 4 +a 3 s 3 +a 2 s 2 +a 1 s+a 0 a 4 =T, a 3 =2 T +1, a 2 =T +2, a 1 =T +5, a 0 =1 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 20

G z = Hurwitz criterion Example 7 Choose T parameter to satisfy Hurwitz criterion G r = 4 s T s+1 1 G o = s 3 +2 s 2 +s+1 G r G o 1+G r G o G p = a 4 >0, a 3 >0, a 2 >0, a 1 >0, a 0 >0 T >0 a 3 a 4 2] a 1 a =T 2 +2>0 T R Δ 2 =[ 4 s a 4 s 4 +a 3 s 3 +a 2 s 2 +a 1 s+a 0 a 4 =T, a 3 =2 T +1, a 2 =T +2, a 1 =T +5, a 0 =1 Δ 3 =[a n 1 a n 0 a n 3 a n 2 a n 1 a n 5 a n 4 a n 3]=T 3 +T 2 2T +9>0 T >2.83 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 21

Nyquist stability criterion x + G 1 y G 2 G z = y x = G 1 1+G 1 G 2 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 22

Nyquist stability criterion x + G 1 y G 2 G z = y x = G 1 1+G 1 G 2 Unstable if: G 1 G 2 = 1 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 23

Nyquist stability criterion x + a G z = y x = G 1 G 2 G 1 y 1+G 1 G 2 x a G 1 G 2 y G open = a x =G 1G 2 Unstable if: G 1 G 2 = 1 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 24

Nyquist stability criterion x + a G z = y x = G 1 G 2 G 1 y 1+G 1 G 2 x a G 1 G 2 y G open = a x =G 1G 2 Im G open Unstable if: G 1 G 2 = 1 ω ω + ω=0 Re G open 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 25

Nyquist stability criterion x + a G z = y x = G 1 G 2 G 1 y 1+G 1 G 2 x a G 1 G 2 y G open = a x =G 1G 2 Im G open Unstable if: G 1 G 2 = 1 ω ω + ω=0 Re G open 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 26

Nyquist stability criterion (particular) The closed-loop system is stable if: 1) open-loop transfer function is stable AND 2) open-loop transfer function not enclosing the point (-1,j0). Im G open Im G open -1 Re G open -1 Re G open stable unstable 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 27

Nyquist criterion Example 8 Choose k parameter to satisfy Nyquist criterion x + G 1 = 2 s 3 +3 s 2 +s+1 y G 2 =k 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 30

Nyquist criterion Example 8 Choose k parameter to satisfy Nyquist criterion x + G 1 = 2 s 3 +3 s 2 +s+1 y G 2 =k G open =G 1 G 2 = 2 k s 3 +3 s 2 + s+1 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 31

Nyquist criterion Example 8 Choose k parameter to satisfy Nyquist criterion x + G 1 = 2 s 3 +3 s 2 +s+1 y G 2 =k G open =G 1 G 2 = 2 k s 3 +3 s 2 + s+1 - stable from Hurwitz 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 32

Nyquist criterion Example 8 Choose k parameter to satisfy Nyquist criterion x + G 1 = 2 s 3 +3 s 2 +s+1 y G 2 =k G open =G 1 G 2 = 2 k s 3 +3 s 2 + s+1 - stable from Hurwitz 2 k 6 k ω 2 P (ω)= (1 3 ω 2 ) 2 +(ω ω 3 ), Q(ω)= 2 k ω 3 2 k ω 2 (1 3ω 2 ) 2 +(ω ω 3 ) 2 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 33

Nyquist criterion Example 8 2 k 6 k ω 2 P (ω)= (1 3 ω 2 ) 2 +(ω ω 3 ), Q(ω)= 2 k ω 3 2 k ω 2 (1 3ω 2 ) 2 +(ω ω 3 ) 2 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 34

Nyquist criterion Example 8 2 k 6 k ω 2 P (ω)= (1 3 ω 2 ) 2 +(ω ω 3 ), Q(ω)= 2 k ω 3 2 k ω 2 (1 3ω 2 ) 2 +(ω ω 3 ) 2 Q(ω) ω=1 ω= ω=0 1 k 0 2 k P(ω) 3 3k ω= 1 3 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 35

Nyquist criterion Example 8 2 k 6 k ω 2 P (ω)= (1 3 ω 2 ) 2 +(ω ω 3 ), Q(ω)= 2 k ω 3 2 k ω 2 (1 3ω 2 ) 2 +(ω ω 3 ) 2 Q(ω) ω=1 ω= ω=0 1 k 0 2 k P(ω) closed-loop system stable for 0 < k <1 3 3k ω= 1 3 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 36

Gain margin Closed-loop system will loose its stability if we add additional gain (in serial) greater or equals to gain margin. Δ M Q(ω) 0 L(ω) [db] ω [rad/s] Δ M -1 P(ω) φ(ω) [rad] π ω [rad/s] 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 37

Phase margin Closed-loop system will loose its stability if we add additional delay (in serial) greater or equals to phase margin. Q(ω) 0 L(ω) [db] ω [rad/s] Δ φ -1 P(ω) φ(ω) [rad] π Δ φ ω [rad/s] 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 38

Stability vs Bode plot Bodego plot (gain + delay) has no physical meaning if the system is unstable! Example: G= 1 s+1 Q(ω) P(ω) L(ω) [db] ω [rad/s] φ(ω) [rad] ω [rad/s] G= 1 s 1 Q(ω) L(ω) [db] ω [rad/s] φ(ω) [rad] ω [rad/s] P(ω) 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 39

Summing of Bode plots example G = 10 s 2 +s = 10 1 s+1 1 s 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 40

Summing of Bode plots example G = 10 s 2 +s = 10 1 s+1 1 s Q(ω) P(ω) Q(ω) 10 P(ω) Q(ω) 1 Q(ω) P(ω) 10 P(ω) 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 41

Summing of Bode plots example G = 10 s 2 +s = 10 1 s+1 1 s 20 0 L(ω) [db] ω [rad/s] 0 L(ω) [db] 20 0,1 1 10 ω [rad/s] L(ω) [db] 20 0 0,1 1 10 ω [rad/s] φ(ω) [rad] 0 ω [rad/s] φ(ω) [rad] π 2 0,1 1 10 ω [rad/s] φ(ω) [rad] π 2 0,1 1 10 ω [rad/s] 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 42

Summing of Bode plots example G = 10 s 2 +s = 10 1 s+1 1 s L(ω) [db] 60 40 20 0 20 0,1 1 10 ω [rad/s] φ(ω) [rad] π 2 0,1 1 10 ω [rad/s] 40 60 π 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 43

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 44

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P G= 1 Ts+1 Im -1 1 Re 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 45

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P G= 1 Ts+1 Im G opened =k p 1 Ts+1 Im -1 1 Re Re -1 k p 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 46

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P G= 1 Ts+1-1 Im G opened =k p 1 Ts+1 1 Re Re -1 Im G opened is always stable G closed is always stable steady state error ratio: k P k P +1 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 47 k p

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 48

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P G= Im 1 T 1 2 s 2 +T 2 s+1 1 Re 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 49

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P G= Im 1 T 1 2 s 2 +T 2 s+1 G opened = Im k p T 1 2 s 2 +T 2 s+1 1 Re Re -1 k p 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 50

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P G= Im 1 T 1 2 s 2 +T 2 s+1 G opened = k p T 1 2 s 2 +T 2 s+1 1 Re Re -1 Im steady state error ratio: k P k P +1 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 51 k p G opened is always stable G closed is always stable

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 52

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P 1 G= T 2 3 s 3 +T 2 2 s 2 +T 1 s+1 Im 1 Re 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 53

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P 1 G= T 2 3 s 3 +T 2 2 s 2 +T 1 s+1 G opened = k p T 3 2 s 3 +T 2 2 s 2 +T 1 s+1 Im -1 Im 1 Re Re k p 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 54

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G =k P 1 G= T 2 3 s 3 +T 2 2 s 2 +T 1 s+1 G opened = k p T 3 2 s 3 +T 2 2 s 2 +T 1 s+1 G closed is not always stable Im -1 Im 1 Re Re steady state error ratio: k P k P +1 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 55 k p

Nyquist stability criterion control loop with P controller x + G y G closed = G 1+ G G opened = G 1 G= T 2 3 s 3 +T 2 2 s 2 +T 1 s+1 =k P conclusion for open-loop transfer function: higher kp lower steady state error -1 lower kp better stability (higher gain margin) Im Re k p 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 56

Nyquist stability criterion control loop with PI controller x + G y ( s )=k P ( 1+ 1 T i s ) G opened = G 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 57

Nyquist stability criterion control loop with PI controller x + G y ( s )=k P ( 1+ 1 T i s ) G opened = G G= 1 Ts+1 Im -1 1 Re 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 58

Nyquist stability criterion control loop with PI controller x + G y ( s )=k P ( 1+ 1 T i s ) G opened = G G= 1 Ts+1 Im G opened =k p 2 Im s T 2 i +2T i T 3 i T s 2 +T 2 i s -1 1 Re -1 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 59

Nyquist stability criterion control loop with PI controller x + G y ( s )=k P ( 1+ 1 T i s ) G opened = G G= 1 Ts+1 Im G opened =k p 2 Im s T 2 i +2T i T 3 i T s 2 +T 2 i s G opened is stable, so G closed is stable -1 1 Re Re -1 k p G opened (ω=0) so steady state error 0 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 60

Correction of the system Correction by proportional term G ( s ) -1 Im Re 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 61

Correction of the system Correction by proportional term G ( s ) k G ( s ) -1 Im -1 Im Re Re 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 62

Correction of the system Correction by proportional term G ( s ) k G ( s ) -1 Im -1 Im Re Re Higher gain margin, higher phase margin, higher steady state error Lower gain margin, lower phase margin, lower steady state error 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 63

Correction of the system Correction by delay G ( s ) G ( s ) e τ s -1 Im -1 Im Re Re Higher gain and phase margins Lower gain and phase margins 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 64

Correction of the system Derivative K ( s )= 1+T s 1+a s+b s 2 Proportional-derivative K ( s )=k P T s+1 αt s+1, α<1 Integral K ( s )=1+ k 1+T s Proportional-integral K ( s )=α T s+1 αt s+1, α>1 Proportional-integral-derivative K ( s )=k (T d s+1 ) ( 1+ 1 T i s ) 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 65

Materials for exam lectures from 1 to 13 (>1100 slides...) Lecture 14 material repeat, supplementary info, informations about the exam, WUT questionnaires, consultations Lecture 15 modern control theory overview, experiment with control system, consultations Exam: Wednesday, 30th January, 10:30-11:30 Wednesday, 6th February, 10:30-11:30 8.01.2019 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes 66