Appendix 1: List of symbols

Similar documents
ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

Semiconductor Physics fall 2012 problems

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Semiconductor Physics Problems 2015

MOS CAPACITOR AND MOSFET

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

Section 12: Intro to Devices

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Current mechanisms Exam January 27, 2012

Quiz #1 Practice Problem Set

Section 12: Intro to Devices

Electronic Devices & Circuits

Semiconductor Physical Electronics

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

Index. buried oxide 35, 44 51, 89, 238 buried channel 56

8.1 Drift diffusion model

Classification of Solids

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

Semiconductor device structures are traditionally divided into homojunction devices

Spring Semester 2012 Final Exam

Effective masses in semiconductors

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

an introduction to Semiconductor Devices

FYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries

Semiconductor Physics fall 2012 problems

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Extensive reading materials on reserve, including

Thermionic Current Modeling and Equivalent Circuit of a III-V MQW P-I-N Photovoltaic Heterostructure

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Semiconductor Junctions

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Chapter 1 Overview of Semiconductor Materials and Physics

n N D n p = n i p N A

The Devices. Jan M. Rabaey

EE 3329 Electronic Devices Syllabus ( Extended Play )

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

6.012 Electronic Devices and Circuits

The Devices. Devices

EECS130 Integrated Circuit Devices

4.2 Molecular orbitals and atomic orbitals Consider a linear chain of four identical atoms representing a hypothetical molecule.

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Figure 3.1 (p. 141) Figure 3.2 (p. 142)

Schottky diodes. JFETs - MESFETs - MODFETs

FIELD-EFFECT TRANSISTORS

Electrical Characteristics of MOS Devices

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

PN Junction

MENA9510 characterization course: Capacitance-voltage (CV) measurements

Fundamentals of Semiconductor Physics

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Metal Semiconductor Contacts

MOS Transistor I-V Characteristics and Parasitics

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

The Devices: MOS Transistors

Lecture 04 Review of MOSFET

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

GaN based transistors

ET3034TUx Utilization of band gap energy

Calculating Band Structure

Semiconductor Module

Schottky Rectifiers Zheng Yang (ERF 3017,

Semiconductor Physics and Devices

Physics of Semiconductors

6.012 Electronic Devices and Circuits

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017

APPENDIXES. A. List of Symbols. G Properties of Si and GaAs H. Properties of SiO, and Si,N,

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

8. Schottky contacts / JFETs

Session 0: Review of Solid State Devices. From Atom to Transistor

CHAPTER 4: P-N P N JUNCTION Part 2. M.N.A. Halif & S.N. Sabki

Semiconductor Physical Electronics

Lecture 12: MOSFET Devices

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

1. The MOS Transistor. Electrical Conduction in Solids

ECE 340 Lecture 39 : MOS Capacitor II

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is

Metal-oxide-semiconductor field effect transistors (2 lectures)

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

Concepts & Equations. Applications: Devices

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Device Models (PN Diode, MOSFET )

* motif: a single or repeated design or color

Peak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction,

Physics of Semiconductors 8 th

Conductivity and Semi-Conductors

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Electronic Supporting Information

1.9.5 Stoichiometry, Nonstoichiometry, and Defect Structures 75

Transcription:

Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination constant m 3 /s c Speed of light in vacuum m/s C Capacitance per unit area F/m 2 C D Diffusion capacitance per unit area F/m 2 C DS Drain-source capacitance F C FB Flatband capacitance per unit area of a MOS structure F/m 2 C G Gate capacitance F C GS Gate-source capacitance F C GD Gate-drain capacitance F C HF High-frequency capacitance per unit area of a MOS structure F/m 2 C j Junction capacitance per unit area F/m 2 C LF Low-frequency (quasi-static) capacitance per unit area of a MOS structure F/m 2 C M Miller capacitance F C ox Oxide capacitance per unit area F/m 2 C s Semiconductor capacitance per unit area F/m 2 D n Electron diffusion constant m 2 /s D p Hole diffusion constant m 2 /s E Energy Joule

E Electric field V/m E 0 Lowest energy in a one-dimensional quantum well Joule E a Acceptor energy Joule E br Breakdown field V/m E c Conduction band energy of a semiconductor Joule E d Donor energy Joule E F Fermi energy (thermal equilibrium) Joule E F,n Fermi energy in an n-type semiconductor Joule E F,p Fermi energy in a p-type semiconductor Joule E g Energy bandgap of a semiconductor Joule E i Intrinsic Fermi energy Joule E n n th quantized energy Joule E ph Photon energy Joule E t Trap energy Joule E v Valence band energy of a semiconductor Joule E vacuum Electron energy in vacumm Joule F(E) Distribution function (probability density function) f BE (E) Bose-Einstein distribution function f FD (E) Fermi-Dirac distribution function f MB (E) Maxwell-Boltzmann distribution function F Force Newton F n Quasi-Fermi energy of electrons Joule F p Quasi-Fermi energy of holes Joule ge) Density of states per unit energy and per unit volume m -3 J -1 g(e) Density of states in the conduction band per unit energy and per unit volume m -3 J -1 g(e) Density of states in the valence band per unit energy and per unit volume m -3 J -1 g d Output conductance of a MOSFET S

g m Transconductance of a MOSFET S G Carrier generation rate m -3 s -1 G n Electron generation rate m -3 s -1 G p Hole generation rate m -3 s -1 h Plank's constant Js h Reduced Plank's (= h /2π) Js I Current A I B Base current of a bipolar transistor A I C Collector current of a bipolar transistor A I D Drain current of a MOSFET A I E Emitter current of a bipolar transistor A I F Forward active current of a bipolar transistor A I D,sat Drain current of a MOSFET in saturation A I ph Photo current A I r Recombination current A I R Reverse active current of a bipolar transistor A I s Saturation current A I sc Short circuit current of a solar cell A J Current density A/m 2 J n Electron current density A/m 2 J p Hole current density A/m 2 k Boltzmann's constant wavenumber J/K m -1 l Mean free path m L Length m L D Debye length m L n Electron diffusion length m

L p Hole diffusion length m L x Hole diffusion length m m Mass kg m * Effective mass kg m A Atomic mass kg m 0 Free electron mass kg * m e * m h M n Effective mass of electrons Effective mass of holes Proton mass Multiplication factor Electron density Integer Refractive index Ideality factor kg kg kg m -3 n i Intrinsic carrier density m -3 n(e) Electron density per unit energy and per unit volume m -3 n 0 Electron density in thermal equilibrium m -3 n i Intrinsic carrier density m -3 n n Electron density in an n-type semiconductor m -3 n n0 Thermal equilibrium electron density in an n-type semiconductor m -3 n p Electron density in a p-type semiconductor m -3 n p0 Thermal equilibrium electron density in a p-type semiconductor m -3 N Number of particles Doping density N a Acceptor doping density m -3 N a - N A Ionized acceptor density m -3 Avogadro's number

N B Base doping density m -3 N c Effective density of states in the conduction band m -3 N C Collector doping density m -3 N d Donor doping density m -3 N d + Ionized donor density m -3 N E Emitter doping density m -3 N ss Surface state density m -2 N t Recombination trap density m -2 N v Effective density of states in the valence band m -3 p Hole density Particle momentum Pressure m -3 kgm/s Nm -2 p(e) Hole density per unit energy m -3 p 0 Hole density in thermal equilibrium m -3 p n Hole density in an n-type semiconductor m -3 p n0 Thermal equilibrium hole density in an n-type semiconductor m -3 p p Hole density in a p-type semiconductor m -3 p p0 Thermal equilibrium hole density in a p-type semiconductor m -3 q electronic charge C Q Heat Charge Joule C Q B Majority carrier charge density in the base C/m 2 Q d Charge density per unit area in the depletion layer of an MOS structure C/m 2 Q d,t Charge density per unit area at threshold in the depletion layer of an MOS structure C/m 2 Q i Interface charge density per unit area C/m 2 Q inv Inversion layer charge density per unit area C/m 2

Q M Charge density per unit area in a metal C/m 2 Q n Charge density per unit area in the depletion layer of an n-type region C/m 2 Q p Charge density per unit area in the depletion layer of a p-type region C/m 2 Q ss Surface state charge density per unit area C/m 2 r e Emitter resistance Ohm r π Base resistance Ohm R The Rydberg constant Resistance J Ohm R n Electron recombination rate m -3 s -1 R p Hole recombination rate m -3 s -1 R s Sheet resistance Ohm s Spin S Entropy J/K t Thickness m t ox Oxide thickness m T Temperature Kinetic energy Kelvin Joule u ω Spectral density Jm -3 s -1 U Total energy Joule U A Auger recombination rate m -3 s -1 U b-b Band-to-band recombination rate m -3 s -1 U n Net recombination rate of electrons m -3 s -1 U p Net recombination rate of holes m -3 s -1 U SHR Shockley-Read-Hall recombination rate m -3 s -1 v Velocity m/s v R Richardson velocity m/s v sat Saturation velocity m/s

v th Thermal velocity m/s V Potential energy Volume Joule m 3 V a Applied voltage V V A Early voltage V V br Breakdown voltage V V B Base voltage V V BE Base-emitter voltage V V BC Base-collector voltage V V C Collector voltage V V CE Collector-emitter voltage V V D Drain voltage V V DS Drain-source voltage V V DS,sat Drain-source saturation voltage V V E Emitter voltage V V FB Flatband voltage V V G Gate voltage V V GS Gate-source voltage V V oc Open circuit voltage of a solar cell V V t Thermal voltage V V T Threshold voltage of an MOS structure V w Depletion layer width m w B Base width m w C Collector width m w E Emitter width m w n Width of an n-type region m w p Width of a p-type region m

W Work Joule x Position m x d Depletion layer width in an MOS structure m x d,t Depletion layer width in an MOS structure at threshold m x j Junction depth m x n Depletion layer width in an n-type semiconductor m x p Depletion layer width in a p-type semiconductor m α α F Absorption coefficient Transport factor Forward active transport factor m -1 α n Ionization rate coefficient for electrons m -1 α R α T β Reverse active transport factor Base transport factor Current gain γ Body effect parameter V 1/2 γ E Emitter efficiency Γ n Auger coefficient for electrons m 6 s -1 Γ p Auger coefficient for holes m 6 s -1 δ n Excess electron density m -3 δ p Excess hole density m -3 δ R Depletion layer recombination factor Q n,b Excess electron charge density in the base C/m 2 ε Dielectric constant F/m ε 0 Permittivity of vacuum F/m ε ox Dielectric constant of the oxide F/m

ε s Dielectric constant of the semiconductor F/m µ 0 Permeability of vacuum H/m Θ Tunnel probability λ Wavelength m µ Electro-chemical potential Joule µ n Electron mobility m 2 /V-s µ p Hole mobility m 2 /V-s ν Frequency Hz ρ Charge density per unit volume Resistivity C/m 3 Ωm ρ ox Charge density per unit volume in the oxide C/m 3 σ Conductivity Ω 1 m -1 τ Scattering time s τ n Electron lifetime s τ p Hole lifetime s φ Potential V φ B Barrier height V φ F Bulk potential V φ i Built-in potential of a p-n diode or Schottky diode V φ s Potential at the semiconductor surface V Φ Flux m -2 s -1 Φ M Workfunction of the metal V Φ MS Workfunction difference between the metal and the semiconductor V Φ S Workfunction of the semiconductor V χ Electron affinity of the semiconductor V Ψ Wavefunction

ω Radial frequency rad/s