Charmed Baryons Productions and decays

Similar documents
Motivated by these backgrounds, a new experimental project has been discussed at J-PARC [6]. There the pion beam of high energy around 20 GeV

Charm baryon spectroscopy from heavy quark symmetry

Structure and reactions of Θ +

J-PARC E50. Charmed Baryon Spectroscopy via the (p, D *- ) reactions. Hiroyuki Noumi RCNP, Osaka Univ.

Meson-induced pentaquark productions

Charmed baryon spectroscopy in a quark model

Heavy Quark Baryons and Exotica

Jacopo Ferretti Sapienza Università di Roma

Exo$c hadrons with heavy quarks

The Quark Parton Model

Lecture 9 Valence Quark Model of Hadrons

Lecture 9. Isospin The quark model

Exotic Hadrons: models applied to LHCb pentaquarks

TETRAQUARKS AND PENTAQUARK(S)

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses

Production cross sections of strange and charmed baryons at Belle

Latest developments in the Spectroscopy of Heavy Hadrons

Multiquark states by a quark model

Hyperon and charmed baryon productions with an instanton interaction

Charmed Baryon spectroscopy at Belle 1. Y. Kato KMI topics. Mainly based on the paper recently accepted by PRD ( arxiv: )

Antimo Palano INFN and University of Bari, Italy On behalf of the LHCb Collaboration

Structure and compositeness of hadrons

Lecture 8. CPT theorem and CP violation

Heavy Quark Spectroscopy at LHCb

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Particle Discovery at the LHC. Sally Seidel University of New Mexico 20 October 2017 APS Four Corners Meeting

Wave functions and compositeness for hadron resonances from the scattering amplitude

Quantum Field Theory. Ling-Fong Li. (Institute) Quark Model 1 / 14

Charmed Baryons. Flavor Physics and CP Violation John Yelton University of Florida

Exotic hadronic states XYZ

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis?

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013

Description of Heavy Exotic Resonances

Studies of pentaquarks at LHCb

Constraint on KK compositeness of the a 0 (980) and f 0 (980) resonances from their mixing intensity

Spectroscopy Results from COMPASS. Jan Friedrich. Physik-Department, TU München on behalf of the COMPASS collaboration

Meson Spectroscopy Methods, Measurements & Machines

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Some recent progresses in heavy hadron physics. Kazem Azizi. Oct 23-26, Second Iran & Turkey Joint Conference on LHC Physics

Discovery of charged bottomonium-like Z b states at Belle

Charmonium & charmoniumlike exotics

Θ + and exotic hadrons

Kai Zhu on behalf of BESIII collaboration Institute of High Energy Physics, Beijing March, Moriond QCD 2015

Production and Searches for Cascade Baryons with CLAS

Searches for exotic mesons

Gian Gopal Particle Attributes Quantum Numbers 1

Pentaquarks and Exotic Charm Spectroscopy at LHCb

Structure of near-threshold s-wave resonances

arxiv:nucl-th/ v1 27 Nov 2002

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

b-baryon decays and the search for exotic hardons at LHCb

Heavy mesons and tetraquarks from lattice QCD

Discovery of Pions and Kaons in Cosmic Rays in 1947

KAON-NUCLEON AND ANTI-KAON-NUCLEON INTERACTIONS IN A CONSTITUENT QUARK MODEL

arxiv: v2 [hep-ph] 15 Nov 2014

On the structure of Zc(3900) from lattice QCD

Double-charmed Baryons

M.Yu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko

Interpretation of Positive Parity, J/Ψ- φ Resonances at LHCb

Exotic Hadrons. O Villalobos Baillie MPAGS PP5 November 2015

Lattice QCD investigation of heavy-light four-quark systems

Baryon Spectroscopy: what do we learn, what do we need?

Structure and compositeness of hadrons

Experiments using polarized photon beam and polarized hydrogen-deuteride (HD) target

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Clebsch-Gordan Coefficients

Hadronic physics from the lattice

Production of charmed baryons and mesons in antiproton-proton annihilation

What we know about the Λ(1405)

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

arxiv:nucl-th/ v1 3 Jan 2006

Results on Charmonium-like States at BaBar

8. Quark Model of Hadrons

Recent Results on Spectroscopy from COMPASS

Valence quark contributions for the γn P 11 (1440) transition

Kenji Sasaki (YITP, Kyoto University) Collaboration

Vector-Meson Photoproduction

Recent results on spectroscopy from

Problem Set # 1 SOLUTIONS

Moskov Amaryan Old Dominion University On behalf of the CLAS Collaboration

SU(3) systematization of baryons. Vadim Guzey. Theory Center, Jefferson Lab

Chengping Shen: Beihang University, Beijing XVI International Conference on Hadron Spectroscopy (Hadron 2015) September, 2015, JLab, USA

M.Yu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko

Compositeness of Dynamically Generated Resonances

BaBar s Contributions. Veronique Ziegler Jefferson Lab

Exotic baryon resonances in the chiral dynamics

CharmSpectroscopy from B factories

Heavy Baryon Spectrum and New Heavy Exotics

Production of Tetraquarks at the LHC

Strange Charmed Baryons Spectroscopy

Heavy hadron spectroscopy at Belle. Kenkichi Miyabayashi (Nara Women s University) Hadrons and Hadron Interactions in QCD Mar.

Hadronic few-body systems in chiral dynamics ~ few-body systems in hadron physics ~ D. Jido (Yukawa Institute, Kyoto)

Compositeness of the Δ(1232) resonance in πn scatterings

Quark Model of Hadrons

Attributes of molecule-like exotics in the heavy sector - Interlude on EFTs. - Observables that test the molecular hypothesis in

Quarks and Hadrons. Properties of hadrons Pions and nucleons Strange particles Charm and beauty Breit-Wigner distribution Exotics

New States with Heavy Quarks. Karliner, Marek.

2007 Section A of examination problems on Nuclei and Particles

Hadron Spectroscopy: Results and Ideas.

Transcription:

Charmed Baryons Productions and decays Atsushi Hosaka RCNP, Osaka University Reimei( ), Jan.17-20, 2016 Collaborators: Noumi, Shirotori, Kim, Sadato, Yoshida, Oka, Hiyama, Nagahiro, Yasui PTEP 2014 (2014) 10, 103D01 PRD92 (2015) 9, 094021 PRD92 (2015) 11, 114029 1. Introduction 2. Structure Masses and WF 3. Production 4. Decays Studied at J-PARC Reaction rates and structure, WF Jan. 17-20, 2016 1

1. Introduction X(3872) Exotic threshold phenomena Z(10610, 10650) Pc(4380, 4450) 3.7 3.8 3.9 4 4.1 4.2 2 M max (πj/ψ) (GeV/c ) Jan. 17-20, 2016 2 2 Events / 0.02 GeV/c 70 60 50 40 30 20 10 0 Z(3900) data Fit Background PHSP MC

Multiquarks, correlations near the threshold 4.2 Z(4430) Meson molecules Diquark Tetraquark qq qqqq qq 3.8 Z(3900) X(3872)?? 3.6 3.4 3.2 3.0 2.8 creation and rearrangement of multiquarks Correlations qq hadrons qq diquarks Jan. 17-20, 2016 3 qq

Charmed baryons for the study of qq dynamics [GeV]? 5/2 + More states at J-PARC? 1/2? 3/2 + Excited states ρ λ 3/2 1/2 1hω 1/2 + 3/2 + 1/2 + 3/2 + 1/2 + Ξ C csq Ξ C Ξ C 1/2 + Ω C css Disentangle the role of qq Ground states λ ρ 1 Ξ + cc cqq cqq Feb.16 - Mar.21, 2015 HHIQCD, YITP 4

2. Structure: what do we expect to study? A heavy quark distinguish the fundamental modes λ and ρ Place to look at qq dynamics Isotope-shift: Copley-Isgur-Karl, PRD20, 768 (1979) ρ ρ qq λ λ λ ρ m Q,m Q Jan. 17-20, 2016 ρ = λ ρ λ m Q = m u,d m Q Smooth change in mq is useful 5

Negative parity states p-wave excitations - 1/2, 3/2 Quark model 3-body calculation Yoshida, Sadato, Hiyama, Oka, Hosaka arxiv:1510.01067 (2015) Model Hamiltonian H = p 1 2 + p 2 2 + p 2 3 2m q 2m q 2M Q P2 2M tot + V conf (HO) + V spin spin (Color magnetic) +... Solved by the Gaussian expansion method Jan. 17-20, 2016 6

Excitation energies p- wave states M = m M = m s 0.7 ρ mode M = m c 0.6 0.5 HQ singlet Σ(5 / 2 ) Σ(3 / 2 ) Σ(1/ 2 ) Λ(5 / 2 ) Λ(3 / 2 ) Λ(1/ 2 ) 0.3 0.4 HQ doublet 0.5 1 2 M [GeV] 5 λ mode Jan. 17-20, 2016 7

Wave functions, ρ and λ mixing Mixing of Λ(phys) = c λ Λ( 2 λ) + c ρ Λ( 2 ρ) e.g. λ-mode dominant state: How much the other mode mixes? λ mode prob Probability c 2 Strange Λ solid Σ dashed ρ mode prob Charm Λ c * is almost pure λ mode Reflect more qq nature SU(3) M Q [GeV] Heavy quark Jan. 17-20, 2016 8

3. Productions π + N à D * + Λ c i O f Jan. 17-20, 2016 9

3. Productions π + N à D * + Λ c A. B. Kaidalov and P. E. Volkovitsky, B. Z. Phys. C 63, 517 (1994) Reaction dynamics Regge model i O f How much is charm produced? Jan. 17-20, 2016 10

3. Productions π + N à D * + Λ c A. B. Kaidalov and P. E. Volkovitsky, B. Z. Phys. C 63, 517 (1994) Reaction dynamics Regge model i O f How much is charm produced? PTEP 2014 (2014) 10, 103D01, PRD92 (2015) 9, 094021 How are they related to internal structure? Jan. 17-20, 2016 11

dσ [µb / sr] dω π p ΛK *0 π p ΣK *0 p π, Lab = 4.5 GeV 10 D.J. Krennel et al PRD6, 1220 (1972) 1 0.1 2015, Dec 09-11 1.0 0 +1.0 1.0 0 +1.0 cosθ cosθ 12

Regge model description Kim Hosaka Kim Noumi, arxiv:1509.03567 π + N K *0 + Λ of threshold whereas its effect becomes much smaller as s increases. This can od from the behavior of the u-channel Regge amplitude: T Σ s 0.79. Note that of Σ reggeon exchange is significantly different from that of Σ exchange in the rangian method, where the u-channel makes a negligibly small contribution (see mparison). σ [µb] 10 2 10 1 10 0 K R K * R N Σ R total 1 2 4 8 10-1 10-2 How much is charm produced? π p -> K *0 Λ s/s th [Regge] P lab = 3.95 GeV/c 0 1 2 3 10-4 t GeV 2 Vector-Reggeon dominance with some pseudoscalar Energy dependence is also well produced lor online). Each contribution to the total cross sections for the π p K 0 Λ reaction nction of s/s th, based on a Regge approach. The dotted and dashed curves show the s of K reggeon exchange and K reggeon exchange, respectively. The dot-dashed one ect of the nucleon in the s-channel, whereas the dot-dot-dashed one depicts that of Σ ange in the u channel. The solid curve represents the total result. The experimental en from Ref. [24] (triangles) and from Ref. [25] (circles). Jan. 17-20, 2016 13 10 2 10 0 10-2 dσ/dt [µb/gev 2 ]

Prediction to the charm production 10 2 π p -> ( K *0 Λ & D *- Λ c + ) [Regge] σ [µb] 10 0 10-2 10-4 10-4 K *0 Λ D *- Λ c + 10-6 1 2 4 8 s/s th Jan. 17-20, 2016 14

How are they related to internal structure? PTEP 2014 (2014) 10, 103D01 N i O f Various YC Quark model wave functions Jan. 17-20, 2016 15

Dynamical part ~ radial integral q(p i ) c(p f ) q eff : the momentum transfer ~ Large GS d Excited states B c (S-wave) e! σ! e i! q eff!x N(S-wave) radial ~ 1 exp q 2 eff 4A 2 B c (P-wave)! e! σ e i! q eff!x N(S-wave) radial ~ q eff A 1 exp q 2 eff 4A 2 B c (D-wave)! e! σ e i! q eff!x N(S-wave) radial ~ 2015, Dec 09-11 Transitions to excited states are not suppressed q eff A 2 exp q 2 eff 4A 2 16

Results Charm k π CM = 2.71 [GeV], k π Lab = 16 [GeV] 1.00 0.02 0.16 0.90 1.70 0.02 0.03 0.04 0.19 0.18 0.50 0.88 0.02 0.02 0.01 0.03 0.07 0.07 Feb.16 - Mar.21, 2015 HHIQCD, YITP 17 Strange k π CM = 1.59 [GeV], k π Lab = 5.8 [GeV] 1.00 0.067 0.44 0.11 0.23 0.007 0.01 0.01 0.07 0.067 0.13 0.20 0.007 0.01 0.004 0.02 0.038 0.04

Charm production spectrum Ground state Excited states l = 0 l = 1 1/ 2 + 1/ 2 3 / 2 HQ doublet J = j l + s H = j l ±1/ 2 l = 2 3 / 2 + 5 / 2 + 1 : 2 2 : 3 Jan. 17-20, 2016 18

Similarity Establishing single particle orbits: 89 Y f1/2, 3/2 d1/2, 3/2 p1/2, 3/2 s1/2 H.#Hotch#et#al.,## Phys.#Rev.#C64,#044302(2001)# Jan. 17-20, 2016 19

π + p D * + B c* (J P ) s p d π + + 89 Y K + + 89 ΛY(J P ) d Jan. 17-20, 2016 20

π + p D * + B c* (J P ) p s d π + + 89 Y K + + 89 ΛY(J P ) s p d Jan. 17-20, 2016 21

4. Decays Pion emission N π Y c * M c Y c * Y c Jan. 17-20, 2016 22

4. Decays Pion emission... On going, Nagahiro, Yasui,,, Unique feature ~ very near the threshold Λc(2625, 3/2 ) l = 1 Λ (2595, 1/2 ) c p = 102MeV p ~ 0 MeV Σc(2455, 1/2+) Ground states l=0 p = 94MeV Λc(2286, 1/2+) Place to look at the two independent operators π!!!!!! σ q!! σ p, σ p i f p p f i * Λc Σc µ q γ q φ, q γ γ 5 q µ φπ 5 π Jan. 17-20, 2016 Reimei WS@J- PARC 23

Example { ( )( ) } ( ) ( ) Λ c(1/2, λ-mode) + Σ gs c (1/2 + ) ++ π { λ ( ) (1 ) it σ = ig ω π 2 2M Λ 2MΣ m 3 2 q qλ λ + q ρ e q 2 λ 4a 2 λ e q 2 ρ 4a 2 ρ 2aλ ( ) ( ) it q σ = ig q M 2 2M Λ 2MΣ m 2m + M ω q π 2m ( 1) λ e q 2 λ 4a 2 λ e q 2 ρ 4a 2 ρ 3 2aλ Form factor a: Wave function parameter q: Pion momentum π Jan. 17-20, 2016 24

Ground (1/2, 3/2 + ) > Ground (1/2 + ) B i J P Γ full exp(γ i ) q Γ th (Σ c (J + ) ++ Λ gs c (1/2 + ;2286) + π + ) (MeV) (MeV) (MeV) (MeV) Σ c (2455) 1/2 + 2.26 (2.26) 89 4.27 4.33 (2453.98) (2.26) (ω π =0limit) Σ c (2520) 3/2 + 14.9 (14.9) 176 30.0 31.2 (2517.9) (ω π =0limit) 1/2 > Ground (1/2 + ) Preliminary results g A q = 1 g A N = 5/3 Γ th (Λ c(j ) + Σ gs c (2455; 1/2 + ) ++ π ) B i J P Γ full exp q λ-mode ρ-mode (MeV) (Γ i ) (MeV/c) doublet singlet doublet doublet (MeV) 1/2 3/2 1/2 1/2 3/2 3/2 5/2 Λ c (2595) 1/2 2.6 π 0.15-0.29 0 0.65 1.20 (2592.25) (0.624) π 0 1.23 2.36 5.29 9.69 total 1.38 2.66 5.94 10.89 Λ c (2625) (3/2 ) < 0.97 101 5.4 0.024 0 24.0 0.013 0.023 0.010 (2628.11) (0.0485) 10.7 0.039 45.1 0.019 0.034 0.015 Jan. 17-20, 2016 x 3 x 3 Λ c (2765)?? 50 263 20.4 46.7 2.6 3.9 0 107.8 224.0 1.4 1.9 2.5 3.4 1.1 1.5 (2766.6) (not seen)

Decays right on the threshold Λ c 2595; 1/2 + Σ c 2455 ++ π : π π + π Finite Γ Σc Λ c Λ c Σ c gs++ 140 2595 2455 Σ c gs++ π + Finite Γ Σc Λ c gs+ Λ c gs+ Γ = 2.6 MeV 24 % = 0. (isospin sym. assumed [P = 2. 26 MeV = 2. 26 MeV M Λ(2595) < M Σ 2455 ++ + m π Γ π = 0? Oct. 5-10, 2015 Partial decay width Γ i [MeV] (~transition cross section) 8 Partial decay width Γ i [MeV] (~transition cross section) 6 4 2 0 8 6 4 2 0 2.58 M Σ 2455 + + m π 0 2.585 Γ π 0 2.59 s [GeV] NUFRA2015 2.595 2.595 H. Nagahiro Γ π 0 > Γ π ~ phase space Γ π 2.6 2.605 Λ c Λ c 2625 3/2 2595 1/2 ~ 138 MeV 26

Summary Heavy quarks identify and disentangle different modes of baryons, ρ and λ modes Productions are useful for structure study A similar feature with hyper nuclei Charm baryons could be abundantly produced Decays are useful to further understand the structure Jan. 17-20, 2016 27

1. Introduction Hyper nuclei Λ Go into deep inside Established shell structure Charmed baryons ρ λ Q Causes isotope- shift Will discriminates modes Three particles Internal ρ and λ modes Jan. 17-20, 2016 28

Another interest: Exotics - Multiquarks Jan. 17-20, 2016 29

LHCb found Pentaquarks = cc bar uud http://arxiv.org/abs/1507.03414 7-8 TeV pp collision > Λ b Λ b J /ψ, p!" # $#, K ] 2 [GeV ψp J/ m 2 26 24 22 LHCb 20 18 16 2 3 4 5 6 2 mkp 2 [GeV ] Jan. 17-20, 2016 30

2. Structure: what do we expect to study? A heavy quark distinguish the fundamental modes λ and ρ Place to look at qq dynamics Isotope-shift: Copley-Isgur-Karl, PRD20, 768 (1979) ρ λ ρ = λ Jan. 17-20, 2016 31

4. Decays N π Y c * M c Y c * Y c Jan. 17-20, 2016 32

ρ-modes Decays of baryons π J P J P + π(0,l π ) Jan. 17-20, 2016 33

ρ-modes Decays of baryons = of diquarks j P j P + π(0,l π ) π J P J P + π(0,l π ) Two conditions must be satisfied for baryons and for diquarks Λ c (1/ 2,ρ) Σ c (1/ 2 +,GS) + π d( 3 P 0 ) d( 3 S 1 ) + π is not allowed Jan. 17-20, 2016 34

Model Hamiltonian H = p 2 1 + p 2 2 + p 2 3 2m q 2m q 2M Q P2 2M tot + V conf (HO) + V spin spin (Color magnetic) +... Solved by the Gaussian expansion method Jan. 17-20, 2016 35

ωω ρλ = ω λ ρ 1 3 1+ 2m M 1/2 = 1 ( 1+ 2x ) 3 1/2 cqq bqq ccq qqq bbq &2012 JPARC<Collab M/m Jan. 17-20, 2016 36

Strategy: Forward peak (high energy) à t-channel dominant We look at: (1) Absolute values by (Λ c /Λ s ) by the Regge model, K*, D * Vector-Reggeon (2) Ratios of B c *(λ modes) / B c by a one step process of Qd picture for λ-mode Pion-induced reaction π + p à D * + B c * π D * Jan. 17-20, 2016 37 p d D * Reggeon Quark model WF B c *

Unique feature ~ very near the threshold Λ c *(2625, 3/2 ) Λ c *(2595, 1/2 ) ~ 140 MeV Σ c (2455, 1/2 + ) Place to look at the two independent operators Λ c * 4. Decays Pion emission! p i! σ! q On going, Nagahiro and Yasui π! p f Σ c p = 102MeV; allowed p ~ 0; marginally allowed p = 94MeV; allowed Λ c (2286, 1/2 + )! σ! p i,! σ! p f qγ 5 qφ π, qγ µ γ 5 q µ φ π Jan. 17-20, 2016 38

Actual computations Λ c * (P-wave excitations, J P ) Σ c (2455, 1/2 + ) + π π Quark model (H.O.) wave functions λ ρ Sd = 0, 1 l λ,ρ = 1 S Q = 1/2 } J Light = 0,1,2 JTotal }= 1/2, 3/2, 5/2 } } HQ doublet HQ singlet m = 0.4 GeV, k = 0.03 GeV 3 M = 1.5 GeV R2 1/2 = 0.5 fm g A (q) = 1, f π = 93 MeV L πqq = g A (q) Jan. 17-20, 2016 39 f π qγ µ γ 5 q µ φ π

Initial baryons Λc * Λc(2595) 2592.25 Λc(2625) 2628.11 Λc(2765) Σc?, 2766.6 Λc(2880) 2881.63 Λc(2940) 2939.3 Γexp (full ) [MeV] p [MeV] Γcalc(Λc * > Σc(2455) π) [MeV] λ-mode, lλ=1 ( ρ-mode, lρ=1 Doublet d( 1 S0) [lλ, c] 1/2, Singlet [d( 3 P0)] 1/2 Doublet [d( 3 P1) c] 1/2, 3/2 Doublet [d( 3 P2) c] 3/2, 5/2 1/2 3/2 1/2 1/2 3/2 3/2 5/2 2.6 1.7* * * * * * * < 0.97 (102) 50 (262 ) 5.8 (376) 17 (427) 18 0.1 0** 81 0.04 0.08 0.03 76 8 0** 390 4.5 7.8 3.6 107 37 0** 624 21 37.5 17 110 66 0** 700 38 64 29 * Almost threshold carefully studied, ** Forbidden (selection rule) 1/2 : s- wave πσ decay 3/2, 5/2 + : d, f- wave πσ decay > suppressed by power (q/a) 4, 6 Λ c (2880) and Λ c (2940) could be higher spin states? Jan. 17-20, 2016 40