Spintronic device structures

Similar documents
Fundamental concepts of spintronics

Spin Switch and Spin Amplifier: Magnetic Bipolar Transistor in the Saturation Regime

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin

Spin injection. concept and technology

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Spin-polarized current amplification and spin injection in magnetic bipolar transistors

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

Recent developments in spintronic

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Spintronics Beyond Magnetoresistance: Putting Spin in Lasers

Spintronics at Nanoscale

Semiconductor Physics fall 2012 problems

Theory of spin-polarized bipolar transport in magnetic p-n junctions

Semiconductor Physical Electronics

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Spin-orbit coupling fields in Fe/GaAs heterostructures

Mesoscopic Spintronics

Spintronics: Combination of Nanotechnology & Superconductivity

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Introduction to Power Semiconductor Devices

Material Science II. d Electron systems

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

EE 3329 Electronic Devices Syllabus ( Extended Play )

The story so far: Today:

Overview of Spintronics and Its place in the Semiconductor Industry Roadmap

Fundamentals of Semiconductor Physics

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Expecting the unexpected in the spin Hall effect: from fundamental to practical

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

Session 6: Solid State Physics. Diode

2005 EDP Sciences. Reprinted with permission.

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Semiconductor Physics Problems 2015

Semiconductor Physical Electronics

Electrical spin-injection into semiconductors

Physics and applications (I)

Semiconductor Physics fall 2012 problems

SEMICONDUCTOR SPINTRONICS

1st Year-Computer Communication Engineering-RUC. 4- P-N Junction

MSE 7025 Magnetic Materials (and Spintronics)

Physics of Semiconductors

EXTRINSIC SEMICONDUCTOR

Erik Lind

Concepts in Spin Electronics

Electronic and Optoelectronic Properties of Semiconductor Structures

Conductivity and Semi-Conductors

Coherent Spin Polarization in an AC-Driven Mesoscopic Device

Current mechanisms Exam January 27, 2012

Classification of Solids

1.9.5 Stoichiometry, Nonstoichiometry, and Defect Structures 75

The pn junction. [Fonstad, Ghione]

Spring Semester 2012 Final Exam

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS)

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler

Hall Effect. Sergio O. Valenzuela. ICREA and Centre d Investigació en Nanociència i Nanotecnologia (ICN-CSIC), Barcelona.

6.012 Electronic Devices and Circuits

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Semiconductor device structures are traditionally divided into homojunction devices

ECE 340 Lecture 27 : Junction Capacitance Class Outline:

9. Semiconductor Devices /Phonons

From Hall Effect to TMR

Making Semiconductors Ferromagnetic: Opportunities and Challenges

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

Bipolar spintronics: Fundamentals and applications

Optical studies of current-induced magnetization

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

Tunnel Diodes (Esaki Diode)

6.012 Electronic Devices and Circuits

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Topological insulators

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

Voltage- and Light-Controlled Spin Properties of a Two-Dimensional Hole Gas in p-type GaAs/AlAs Resonant Tunneling Diodes

Semiconductor Physics and Devices

Schottky diodes. JFETs - MESFETs - MODFETs

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS

CHAPTER 11 Semiconductor Theory and Devices

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

VALLIAMMAI ENGINEERING COLLEGE

PN Junction

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

Physics of Semiconductors 8 th

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

An Overview of Spintronics in 2D Materials

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

EC/EE DIGITAL ELECTRONICS

Spintronics. Seminar report SUBMITTED TO: SUBMITTED BY:

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc.

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

8. Schottky contacts / JFETs

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications?

Problem 9.20 Threshold bias for an n-channel MOSFET: In the text we used a criterion that the inversion of the MOSFET channel occurs when V s = ;2 F w

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Advanced Lab Course. Tunneling Magneto Resistance

Transcription:

Spintech V Krakow 7.7.2009 Spintronic device structures Jaroslav Fabian Institute for Theoretical Physics University of Regensburg

Giant Magnetoresistance (GMR) magnetoelectronics Tunneling Magnetoresistance (TMR) F I F Julliere 1975; Moodera et al. 1995 Grunberg; Fert (1988) "for the discovery of giant magnetoresistance" applications: HDD, MRAM

:outline: what can we do with (ensemble) spin in semiconductors road map issues: injection, detection, relaxation spin transistors bipolar spintronic devices magnetic resonant tunneling diodes closing I. Zutic, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004) J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Semiconductor spintronics, Acta Physica Slovaca, 57, 565-907 (2007)

spintronics drive technology fundamental discoveries

SPINTRONICS GOALS spin control of electrical properties (I-V characteristics) electrical control of spin (magnetization)

:semiconductor spintronics devices: spin something spin Zener diodes spin resonant diodes spin field-effect transistors magnetic semiconductor tunnel junction devices magnetic unipolar and bipolar junction diodes and transistors spin optoelectronic devices spin galvanics devices spin Hall polarizers spin-polarized semiconductor lasers spin pumping batteries spin-torque devices spin ratchets spin memrams spin quantum computers...

International Technology Roadmap 2004 for Semiconductors: Emerging Research Logic Devices RSFQ 1-D structures resonant tunneling SET molecular QCA spin transistor risk 2005, 2006

International Technology Roadmap 2004 for Semiconductors: Emerging Research Logic Devices RSFQ 1-D structures resonant tunneling SET molecular QCA spin transistor risk 2007, 2008

Intl. Technol. Roadmap for Semiconductor will we have a useful spin transistor?

SPINTRONICS 3 REQUIREMENTS EFFICIENT SPIN INJECTION (slow) SPIN RELAXATION @ (efficient) SPIN CONTROL F N spin accumulation RELIABLE SPIN DETECTION Silsbee-Johnson spin-charge coupling

:spin injection: made visible S. A. Crooker et al., JAP, 101,081716 (2007) S. A. Crooker at al., Science 309, 2191 (2005)

:spin injection: all-semiconductor all-electrical spin injection/detection z x/[010] -y/[100] non-local spin injection/detection device 1 I inj V V V 2 3 4 5 6 L magnetic Esaki diode contacts Au/Ti (Ga,Mn)As n + -GaAs n + n-gaas n-gaas vb cb Spin injection P inj 50% M. Ciorga et al., PRB 79,165321 (2009); see poster 161

Silsbee-Johnson spin-charge coupling R. H. Silsbee, Bull. Magn. Reson.2, 284 (1980); M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985) spin accumulation Q: Suppose there is a source of nonequilibrium spin accumulation at the far right of N. What is the emf due to the proximity with the equilibrium spin polarization P j in F? J. Fabian and I. Zutic, The standard model of spin injection, in book From GMR to Quantum Information, (Forschungszentrums Juelich, 2009), Eds. S. Blügel et al; also in arxiv:0903.2500

:spin relaxation: GaAs, Si GaAs (low temperature) Si (non-degenerate densities) see also poster 264 (Jiang and Wu) J. L. Chang, M. W. Wu, and J. Fabian, arxiv:0906.4054

:spin relaxation: persistent spin helix: engineering spin lifetime Theory: B. A. Bernevig, J. O. Orenstein, and S. C. Zhang, Phys. Rev. Lett. 97, 236601 (2006). Experiment: J. D. Koralek, C. P. Weber, J O. Orenstein, B. A. Bernevig, S. Z. Zhang, S. Mack, D. D. Awschalom, Nature, 458, 610 (2009). individual spin components: short spin lifetime spin helix: 100-times longer spin lifetime From J. Fabian, Nature (N&V) 458, 580 (2009) increased spin injection efficiency J. L. Cheng, M. W. Wu,, and I. C. da Cunha Lima, Phys. Phys. B 75, 205328 (2007)

:materials issues: room temperature ferromagnetic semiconductors? GaMnAs Fe/GaMnAs (Ga,Mn)As Fe Au T. Jungwirth et al., Rev. Mod. Phys. 78, 809 (2006) F. Maccherozzi et al., Phys. Rev. Lett. 101, 267201 (2008) See also poster 234 for related work S. Mark et al. 1-15 % Mn p-doped (Mn replaces Ga) degenerate: p = 10 20-10 21 /cm 3 Tc up to 180 K fm and p-density coupled impurity band or not? above room-temperature fm a few nm of GaMnAs involved bias control? anisotropies?

intl. Semiconductor roadmap 2007 emerging research logic devices

:spin transistors: Datta-Das Sugahara-Tanaka Johnson hot-electron spin transistors Magnetic bipolar transistor J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Semiconductor spintronics, Acta Phys. Slov, 57, 566 (2007)

Bipolar spintronic devices with I. Zutic and S. Das Sarma he is bipolar Spin-polarized pn junction diode, spin capacitance I. Zutic, J. Fabian and S. Das Sarma, Phys. Rev. B 64, 121201 (2001) Spin-polarized solar cell I. Zutic, J. Fabian and S. Das Sarma, Appl. Phys. Lett. 79, 1558 (2001) Magnetic bipolar diode (MBD), GMR, spinvoltaic effect, spin injection, spin extraction I. Zutic, J. Fabian and S. Das Sarma, Phys. Rev. Lett. 88, 066603 (2002) General theory of magnetic bipolar devices J. Fabian. I. Zutic, and S. Das Sarma, Phys. Rev. B 66, 165301 (2002) Magnetic bipolar transistor (MBT), magnetoamplification J. Fabian, I. Zutic, and S. Das Sarma, cond-mat/0211639; Appl. Phys. Lett. 84, 85 (2004) J. Fabian and I. Zutic, Phys. Rev. B 69, 115314 (2004); Appl. Phys. Lett. (2005) Spin injection into silicon: bipolar mode I. Zutic, J. Fabian, and S. Erwin, Phys. Rev. Lett. 97, 026602 (2006)

Bipolar spintronic devices with I. Zutic and S. Das Sarma he is bipolar Spin-polarized pn junction diode, spin capacitance I. Zutic, J. Fabian and S. Das Sarma, Phys. Rev. B 64, 121201 (2001) Spin-polarized solar cell I. Zutic, J. Fabian and S. Das Sarma, Appl. Phys. Lett. 79, 1558 (2001) Magnetic bipolar diode (MBD), GMR, spinvoltaic effect, spin injection, spin extraction I. Zutic, J. Fabian and S. Das Sarma, Phys. Rev. Lett. 88, 066603 (2002) General theory of magnetic bipolar devices J. Fabian. I. Zutic, and S. Das Sarma, Phys. Rev. B 66, 165301 (2002) Magnetic bipolar transistor (MBT), magnetoamplification J. Fabian, I. Zutic, and S. Das Sarma, cond-mat/0211639; Appl. Phys. Lett. 84, 85 (2004) J. Fabian and I. Zutic, Phys. Rev. B 69, 115314 (2004); Appl. Phys. Lett. (2005) Spin injection into silicon: bipolar mode I. Zutic, J. Fabian, and S. Erwin, Phys. Rev. Lett. 97, 026602 (2006)

CONVENTIONAL DIODE 101

ratchet and paw analog of a pn junction diode generation current recombination current p n

:magnetic diode: spin-voltaic effect: spin-charge coupling

GiantMagnetoResistance in MDs Spin-charge coupling: proximity of equilibrium (P p ) and nonequilibrium (δp n )spin

what is in the numerics?

drift-diffusion n-collector n-emitter p-m-base think of Stern-Gerlach

charge and spin continuity spin relaxation

self-consistency with electrostatics

:analytical modeling: generalized Shockley theory J. Fabian, I. Zutic, S. Das Sarma, Phys. Rev. B 66, 165301 (2002) carrier and spin quasiequilibrium in space-charge regions (constant spin-resolved chemical potentials) + continuity of spin current through space-charge regions

:magnetic pn junctions: qualitative statements Impossibility of spin injection at low biases Spin injection of nonequilibrium spin only (beyond the standard spin injection model) Spin-charge coupling Magnetic pn junction arrays (matrix theory): J. Fabian, A. Matos-Abiague, C. Ertler, and P. Stano, Semiconductor spintronics, Acta Phys. Slov, 57, 566 (2007)

experimental observation of spin-voltaic effect in a paramagnetic pn junction T. Kondo, J. Hayafuji, and H. Munekata, Investigation of spin-voltaic effect in a p-n heterojunctions, Jpn. J. Appl. Phys. 45, L663 (2006)

experimental observation of spin-voltaic effect in a ferromagnetic pn junction P. Chen, J. Moser, P. Kotissek, J. Sadowski, M. Zenger, D. Weiss, and W. Wegscheider All electrical measurement of spin injection in a magnetic p-n junction diode, Phys. Rev. B 74, 24302 (R) (2006)

:spin-injection Hall effect: spin-polarized pn junction & local extraordinary Hall transport J. Wunderlich et al, Nature Phys. (in press); arxiv:0811.3486 (see poster 288) Local (50-100 nm) nondistructive electric measurement of spin polarization high-temperature (200 K) operation probe of fundamental spin-orbit (spin helix) physics

bipolar junction transistor microphone e emitter base e collector e ultra high speed digital circuits small-signal amplification high frequency analog circuits (SiGe, GaAs HBTs) integrated Circuits market: 20% BJT, 75% MOSFET

:magnetic bipolar transistor (MBT): J. Fabian, I. Zutic and S. Das Sarma, cond-mat/0211639 (2002); Appl. Phys. Lett. 84, 85 (2004); J. Fabian and I. Zutic, Phys. Rev. B 69, 115314 (2004). M. Flatte, Z. G. Yu, E. Johnston-Halperin, and D. D. Awschalom, Appl. Phys. Lett. 82, 4740 (2003) N. Lebedeva and P. Kuivalainen, J. Appl. Phys. 93, 9845 (2003) all semiconductor magnetic semiconductor active region versatile design materials restricted

:spin-polarized bipolar lasers: reducing the threshold power optical injection of spin-polarized carriers provides a threshold current reduction for the lasing operation J. Rudolph et al., APL 87, 241117 (2005); 82, 4516 (2003) electrical spin injection threshold reduction M. Holub et al., PRL 98, 146603 (2007) Limited theoretical understanding Threshold strongly depends on the recombination mechanism Maximum threshold reduction larger than previously thought possible Very short spin relaxation time of holes is advantageous C. Gothgen, R. Oszwaldowski, A. Petrou, I. Zutic, APL 93, 042513 (2008) I. Vurgaftman et al., APL 93, 031102 (2008)

Magnetic Resonant Tunnel Diodes A. Slobodskyy et al, Phys. Rev. Lett. 90, 246601 (2003) C. Ertler and J. Fabian, Appl. Phys. Lett. 89, 193507 (2006) C. Ertler and J. Fabian, Phys. Rev. B 75 195323 (2007) ZnSe ZnSe BeZnSe BeZnSe ZnMnSe ZnMnSe b) ZnSe ZnSe Current (0-150 μa) 8% Mn T=1.3K B 0T 3T 6T 1.3 K a) Voltage (0-0.2 V) efficient spin filtering spin detection fast switching times coherence issues RT operation? see posters 168 174, 176, 177, 181, 219, 242, 284 Current Density (A/cm 2 ) 2.5 2 1.5 1 0.5 3 x 105 T = 4.2 K Energy (mev) 100 out ΔV 0 2 0 10 20 30 z (nm) 0 out 0 ΔV 0.05 0.1 0.15 0.2 0.25 1 Voltage (V) 50 Δ E = 0 Δ E = 5 mev Δ E = 10 mev Δ E = 15 mev Δ E = 20 mev Δ E = 25 mev Δ E = 40 mev ΔV 3 out

V in :Digital Magneto Resistance (DMR): Ertler and Fabian, Appl. Phys. Lett. 89, 193507 (2006) mono-to-bistable logic element (mobile) (multi-valued logic roadmap, up to 100 GHz demo) Maezawa and Mizutani, Jpn. J. Appl. Phys. 32, L42 (1993) load I driver Load RTD V in V in V out mono V out low B V load = V in V out, I load =I driver Driver mrtd mono high

operational principle of DMR C. Ertler and J. Fabian, Appl. Phys. Lett. 89, 193507 (2006); Phys. Rev. B 75, 195323 (2007) V in RTD V in V out B threshold mrtd B V out low high high mono mono mono mono

:self-sustained magneto-electric oscillations in MRTDs: C. Ertler and J. Fabian, Phys. Rev. Lett. 101, 077 202 (2008) ; poster 168 see also poster 169, Carretero et al. for related work Non-linear coupling of charge, magnetization, and current leads to temporal oscillations of the current etc under dc bias (a) x 10 15 j max (b) 20 j (a.u.) (c) j (a.u.) 10 5 I j min 0 0 10 20 30 Voltage (mv) 10 5 0 x 10 15 II j tot j j 50 100 150 200 Time (t*) Δ (mev) (d) n (1/cm 2 ) 15 10 5 I Δ max Δ min 0 0 10 20 30 Voltage (mv) 14 x 1011 12 10 8 6 4 2 50 100 150 200 Time (t*) II n tot n n

Intl. Technol. Roadmap for Semiconductor will we have a useful spin transistor?

Intl. Technol. Roadmap for Semiconductor will we have a useful spin transistor? too early to say

:conclusions: demonstrate spintronic device schemes new fm materials/materials combinations new physical principles for spin-based devices involve electrical engineers SFB 689 DFG Collaborative Research Center (Regensburg) Spin phenomena in reduced dimensions SPP 1285 DFG Priority Program Semiconductor Spintronics