MODEL QUESTION. Statistics (Theory) (New Syllabus) dx OR, If M is the mode of a discrete probability distribution with mass function f

Similar documents
Math Tricks. Basic Probability. x k. (Combination - number of ways to group r of n objects, order not important) (a is constant, 0 < r < 1)

Chapter 5 Special Discrete Distributions. Wen-Guey Tzeng Computer Science Department National Chiao University

Unbalanced Panel Data Models

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

Lecture 1: Empirical economic relations

Reliability of time dependent stress-strength system for various distributions

Binary Choice. Multiple Choice. LPM logit logistic regresion probit. Multinomial Logit

3.4 Properties of the Stress Tensor

Independent Domination in Line Graphs

Numerical Method: Finite difference scheme

Introduction to logistic regression

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis

On Estimation of Unknown Parameters of Exponential- Logarithmic Distribution by Censored Data

BASIC PRINCIPLES OF STATISTICS

Estimation Theory. Chapter 4

Consistency of the Maximum Likelihood Estimator in Logistic Regression Model: A Different Approach

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. The Multivariate Gaussian/Normal Distribution: (,,...

Repeated Trials: We perform both experiments. Our space now is: Hence: We now can define a Cartesian Product Space.

Correlation in tree The (ferromagnetic) Ising model

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

Counting the compositions of a positive integer n using Generating Functions Start with, 1. x = 3 ), the number of compositions of 4.

Course 10 Shading. 1. Basic Concepts: Radiance: the light energy. Light Source:

Ordinary Least Squares at advanced level

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

Module 7. Lecture 7: Statistical parameter estimation

Chapter 6. pn-junction diode: I-V characteristics

22 Nonparametric Methods.

Continuous Distributions

signal amplification; design of digital logic; memory circuits

Special Instructions / Useful Data

The real E-k diagram of Si is more complicated (indirect semiconductor). The bottom of E C and top of E V appear for different values of k.

Suzan Mahmoud Mohammed Faculty of science, Helwan University

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

The probability of Riemann's hypothesis being true is. equal to 1. Yuyang Zhu 1

Estimation of Population Variance Using a Generalized Double Sampling Estimator

Chapter 4 Multiple Random Variables

Lecture Notes Types of economic variables

ρ < 1 be five real numbers. The

STK4011 and STK9011 Autumn 2016

CBSE , ˆj. cos CBSE_2015_SET-1. SECTION A 1. Given that a 2iˆ ˆj. We need to find. 3. Consider the vector equation of the plane.

Bayesian Shrinkage Estimator for the Scale Parameter of Exponential Distribution under Improper Prior Distribution

A Stochastic Approximation Iterative Least Squares Estimation Procedure

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek

Introduction to logistic regression

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

Second Handout: The Measurement of Income Inequality: Basic Concepts

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

Econometric Methods. Review of Estimation

Probability and Statistics. What is probability? What is statistics?

MODELING TRIVARIATE CORRELATED BINARY DATA

Parameter, Statistic and Random Samples

Formulas and Tables from Beginning Statistics

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Chapter 5 Properties of a Random Sample

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

ln x = n e = 20 (nearest integer)

The expected value of a sum of random variables,, is the sum of the expected values:

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Aotomorphic Functions And Fermat s Last Theorem(4)

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation

Channel Capacity Course - Information Theory - Tetsuo Asano and Tad matsumoto {t-asano,

STK3100 and STK4100 Autumn 2018

Entropy Equation for a Control Volume

STK3100 and STK4100 Autumn 2017

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

Notation: X = random variable; x = particular value; P(X = x) denotes probability that X equals the value x.

CBSE SAMPLE PAPER SOLUTIONS CLASS-XII MATHS SET-2 CBSE , ˆj. cos. SECTION A 1. Given that a 2iˆ ˆj. We need to find

Lecture 3. Sampling, sampling distributions, and parameter estimation

σ σ r = x i x N Statistics Formulas Sample Mean Population Mean Interquartile Range Population Variance Population Standard Deviation

Machine Learning. Principle Component Analysis. Prof. Dr. Volker Sperschneider

X ε ) = 0, or equivalently, lim

Analysis of Variance with Weibull Data

Washington State University

Reliability analysis of time - dependent stress - strength system when the number of cycles follows binomial distribution

Power Spectrum Estimation of Stochastic Stationary Signals

pn Junction Under Reverse-Bias Conditions 3.3 Physical Operation of Diodes

Random Variables and Probability Distributions

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Lecture 3 Probability review (cont d)

The R Package PK for Basic Pharmacokinetics

Chapter 5 Properties of a Random Sample

Notation for Mixed Models for Finite Populations

Chp6. pn Junction Diode: I-V Characteristics II

IAEA-CN-184/61 Y. GOTO, T. KATO, K.NIDAIRA. Nuclear Material Control Center, Tokai-mura Japan.

LINEAR REGRESSION ANALYSIS

IFYMB002 Mathematics Business Appendix C Formula Booklet

Law of Large Numbers

Inner Product Spaces INNER PRODUCTS

Chapter 6 Student Lecture Notes 6-1

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

1985 AP Calculus BC: Section I

Note on the Computation of Sample Size for Ratio Sampling

STA302/1001-Fall 2008 Midterm Test October 21, 2008

Chiang Mai J. Sci. 2014; 41(2) 457 ( 2) ( ) ( ) forms a simply periodic Proof. Let q be a positive integer. Since

CHAPTER VI Statistical Analysis of Experimental Data

Statistical Thermodynamics Essential Concepts. (Boltzmann Population, Partition Functions, Entropy, Enthalpy, Free Energy) - lecture 5 -

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

Point Estimation: definition of estimators

Transcription:

MODEL QUESTION Statstcs (Thory) (Nw Syllabus) GROUP A d θ. ) Wrt dow th rsult of ( ) ) d OR, If M s th mod of a dscrt robablty dstrbuto wth mass fucto f th f().. at M. d d ( θ ) θ θ OR, f() mamum valu at M. (Fll th blak) If two varabls ar roortoal th thy do ot hav ay corrlato. (Wrt tru or fals) Fals. ) I cas of rakg som dvduals wth rsct to a charactrstc td raks may occur. (Wrt tru or fals) OR, Two raks of a dvdual must b qual wh som dvduals ar rakd wth rsct to two attrbuts. (Wrt tru or fals) Tru OR, Fals v) To study th trd of a tm srs o ds to tak (a) oly o obsrvato (c) oly daly obsrvatos (Wrt th corrct aswr) (d) obsrvatos for a suffctly log tm. (b) two obsrvatos (d) obsrvatos for a suffctly log tm v) A radom varabl X s such that P(X ) P(X ). What s th valu of P(X > )? P(X > ) P(X )

v) If a dscrt varabl assums valus, 6, 7, 8, 9 ad wth qual robablts th ts robablty mass fucto s gv by..., f,,6,7,8,9, f () (Fll th blak), othrws OR, I cas of a cotuous radom varabl X P(X.). (Fll th blak) f() 6 f,,6,7,8,9,, othrws OR, P(X.) v) For a bomal varabl X E(X) < Var (X). (Wrt tru or fals) Fals (E(X) > V(X) for B.) v) If th aramtr of a Posso dstrbuto s 7.8 th ts mod s (Fll th blak) Mod [7.8] 7 ) If a dgt s tak from a radom umbr srs, th robablty that t s 9 ad th robablty that t s ot 9 ar ot qual. (Wrt tru or fals) OR, Ca ay dgt rat a radom umbr srs? Tru. OR, ys, ay dgt ca rat. ) If th obsrvd valus of a saml ar gv, th valu of a statstc bcoms fd. (Wrt tru or fals) Tru. GROUP B. ) Wh oly two attrbuts A ad B havg two forms ach ar cosdrd, how ar th margal frqucs ad th total frqucy rlatd? Sum of th two margal frqucs for ach of two attrbuts A ad B Total frqucy. ) Df bvarat data wth a sutabl aml. OR, Wh ar two varabls sad to b ostvly corrlatd? S, Gr or Roychowdhury.

OR, Wh th valus of o of th varabls cras (or dcras) wth th cras (or dcras) th valus of th othr varabl, th th two varabls ar ostvly corrlatd. ) Show th cas wh th valu of Sarma s rak corrlato coffct wll b +. OR, What do you ma by rak corrlato? Sarma rak corrlato coffct s gv by th formula r s ( d ) for dvduals btw two sts of raks. Ad hc r s + wh d for all ().. Q R.. th two raks ar qual for ach dvdual. OR, S Gr or Roychowdhury. v) If for a bomal dstrbuto m ad th what s th valu of th coffct of varato? OR, If for a bomal dstrbuto th ctd valu s 4 ad varac s, what ar th valus of ts aramtrs? 6 mq C.V of B(,, % % µ m % 4% OR, Hr m 4 & mq q 4 8 % 4 4 m 6 4 4 4 Paramtrs ar m 6 & 4 v) Show that a ormal dstrbuto s symmtrc about ts ma. Th.d.f. of Normal dstrbuto wth arators µ & σ s gv by

µ σ f() ; < < πσ, othrws. Now, f(µ + ) & f(µ ) σ πσ σ πσ f(µ + ) f(µ ) Hc th dstrbuto s symmtrc about µ, whr µ s th ma of th dstrbuto. v) Stat th mag of a Poulato Statstcs. S Gr or Roychowdhury GROUP C ( µ ) / σ. ) Dtrm th valu of d σ π + [Gv that r π] OR, Fd th frst ordr raw momt of th robablty dstrbuto havg dsty fucto, gv by f() / θ, f >, θ> θ, othrws πσ µ σ d z µ dz uttg z π σ z dz ; sc π z s a v fucto. t π dt t z [ uttg t

zdz dt; dz dt t. t t dt π π.. π π OR, Frst ordr raw momt s gv by / µ E(X) f() d. θ / θ d - t θ θt.. θdt /θ t; d θ dt θ. t. t - dt θ. θ. θ. ) I th as of two attrbuts A ad B dscuss th cass of assocato. OR, Draw scattr dagrams cass of rfct corrlato btw two varabls. S Gr or Roychowdhury OR, Prfct ostv corrlato Prfct gatv assocato ) If th bass ad scals of two corrlatd varabls ar chagd, dtrm th ffct o corrlato coffct. OR, If two varabls ad hav a commo varac ad corrlato coffct

r, rss r trms of θ so that + ad + θ ( θ ) bcom ucorrlatd. Cosdr th ar of valus (, y ), (, y ),.. (, y ) o th varabls (, y), ad u a y c & v ; () ; u & v b w varabls shftg bas & b d scal. Th th corrlato coffct btw & y s gv by y Cov(, y) s s γ, whr Cov(, y) ( ) ( y y) y ( s s.d() ) & s y ( s.d(y) y y) Now, Cov(u, v) ( u u)( v v) a a y c y c b b d Σ d ( )( y y) b.d Cov(, y) b.d su Σ(u u) Σ( ) b d ad s Σ(v v) Σ( y y) v s b s y d Hc th corrlato coffct btw u & v s gv by γ uv Cov(u,v) Cov(, y) b. d s.s b.d s.s u v b. d + γ y b.d Hc umrcal valu of th corrlato coffct rmas ualtrd wth th chag of bas & scal. OR, Lt v( ) v( ) σ Cov(, ) r or Cov(, ) r.σ σ.σ Now, + ad + θ ar ucorrlatd. y

Cov( +, + θ ) or, Cov(, ) + Cov(, θ ) + Cov(, ) + Cov(, θ ) or, ( ) σ + θ Cov(, ) + Cov(, ) + θ v( ) or, σ + θ.r σ +.r σ + θ σ or, + θr + r + θ or, r(θ + ) ( + θ) + θ r θ + v) Drv th two ormal quatos cas of obtag a lar rgrsso l o th bass of bvarat data. OR, If th ormal quatos ar gv for obtag a lar rgrsso l th dtrm th rgrsso l. S Gr or Roychowdhury. OR, S Gr or Roychowdhury. v) Dscrb th mthod of trd dtrmato by th movg avrag mthod wh th rod lgth s a v tgr. OR, Stat th dsadvatags of dtrmg trd by th mthod of movg avrags. S Gr or Roychowdhury. OR, S Gr or Roychowdhury. v) Gv th dfto of a robablty mass fucto of a radom varabl X ad rss P(X X < ) by usg such fucto. OR, If a ubasd co s tossd thrc, fd th robablty dstrbuto of th umbr of tals. For a dscrt radom varabl X, f thr sts a fucto f() such that P(X ) f() satsfyg th codtos () f() > ad () f(), th f() s calld th robablty mass fucto (.m.f.) of X. P(X X < ) P(X, X ) P(X ) f < P(X ) P(X ) f() f() &, othrws.

OR, Th saml sac s S { HHH, THH, HTH, HHT, TTT, HTT, THT, TTH } Lt X b th r.v dotg th o. of tals. Th th ossbl valus of X ar,,, ad th robablty dstrbuto of X s gv th Tabl. Valus of X Prob. P(X ) 8 8 8 8 Total v) Dtrm th mda of a uform (, β) dstrbuto. OR, Dtrm th varac of a uform (, β) dstrbuto. Th.d.f. of th dstrbuto s f(), < < β, othws. If µ b th mda. Th P(X < µ ) P(X > µ ) P(X < µ ) or, µ f()d or, µ d β. β or, ( µ ) β + β Mda, µ +. OR, E(X) f() d d β

. + E(X ) β Hc varac of X s V(X) E(X ) E (X) β β. d β ( β ) + β + + β + β + β 4 + 4β + 4β + β β β ( ) β. 6β v)if a Posso varabl X s such that P (X ) P(X 6) th what s th valu of P (X > )? OR, If a bomal (, ) varabl X s such that P(X ) P(X 6) th what s th valu of? W assum that X ~ P(λ).m.f.; f() P(X ) P(X 6) λ λ λ λ. λ.! 6! P(X > ) P(X ) OR, 6 λ.. λ λ! ; () X ~ B (, ).m.f. s f() P(X ) P(X 6) q ; () or, q q!! 6! 6! 6 6 6 q 4 or, 6 6 6

) I cas of fttg a bomal dstrbuto to a frqucy dstrbuto of a varabl X, how wll you stmat ad us t to fd out a stmat of P(X )? Usg th obsrvd frqucy dstrbuto of r.v. X w ca fd th valu of A.M. as momts as. Th w stmat th ukow by th mthod of f f E(X) ˆ whr X ~ B (, ).. Hc momt stmat of s gv by ˆ, whr A.M. Now,.m.f. of X s f() P(X ) f () +. ; f( ) q. So usg th stmat of as ˆ w ca fd. + ˆ P(X ). f( ) ;. ˆ Usg P(X ) f() ( ˆ ). q ; () ) Dscrb th rocss of slctg boys from a grou of boys by usg a radom umbr srs. OR, I a saml survy mor accurat rsult s obtad ad samlg rror may b gaugd. Ela. S Gr or Roychowdhury. ) Gv th dfto of mmum varac ubasd stmator. Show that f f b th umbr of succsss out of Broull trals wth succss robablty th f s ubasd for. M V U E : A ubasd stmator T of a aramtr θ s sad to b MVUE f T has th mmum varac amog all othr ubasd stmators of θ. Hr f ~ B(, ). Hc E(f). f f E s a u. of.

GROUP D 4. ) For a Posso (λ) dstrbuto th d, rd ad 4 th ctral momts ar µ λ, µ λ ad µ 4 λ + λ rsctvly. Us ths to masur skwss ad kurtoss of th dstrbuto. Hc commt o th skwss ad kurtoss of th dstrbuto. OR, Gv that for a ormal (µ, σ ) dstrbuto th ma s 6. chs ad P(Z > 6.).9. Fd th trval (µ σ, µ + σ) [Gv that for th stadard ormal varabl Z, P (A <.8).9] Th masur of skwss s gv by [ s m ] g g µ & that of kurtoss s gv by µ µ / 4 µ. λ Hr g > sc λ > for ay Posso dstrbuto. / λ λ Hc Posso dstrbuto s ostvly skwd. λ + λ Now, g >. λ >. λ λ Hc Posso dstrbuto s ltokurtc. OR, Assum that X ~ N(µ, σ ), whr µ 6.. Hr P(X > 6.).9 X 6. 6. 6. or P >. 9 σ σ or P(Z < /σ).9 or Φ ( /σ).9 or Φ (/σ).9 Φ (.8) σ.8 σ.8 σ.7.8 (µ σ, µ + σ) (.78, 77.)

) If thr ddt stmators T, T ad T b ubasd for a aramtr ad thr varacs ar th rato : : th whch o of th followg stmators would you rfr most for θ ad why? T + T + T T + T + T T + T,,. 4 OR, O th bass of a radom saml (,,., ) draw wthout rlacmt from a ft oulato wth varac σ fd th ctato of th saml varac ad hc suggst a ubasd stmator for σ. Lt V(T ) σ, V(T ) σ, V(T ) σ T + T + T E 4 E(T ) + E(T ) + E(T ) 4 θ + θ + θ 4 θ T + T + T E E(T ) + E(T ) + E(T ) θ + θ + θ θ T + T E E(T ) + E(T ) θ + θ θ T + T + T V 4 V(T ) + V(T ) + 4V(T ) 6 σ + σ + 4 σ 6 6 σ T,T,T ar ddt. T + T + T V V(T ) + V(T 9 T + T 4V(T ) + V 9 ) + V(T ) σ + σ 9 + σ ; T,T 6 σ σ 9 V(T ) ; T, T, T ar ddt.,t ar ddt. 4 + σ σ 9 9 σ 9 σ. Hr T + T + T V OR, S Gr or Roychowdhury. s mmum ad hc w rfr T + T + T most.