Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi

Similar documents
Units and Dimensions. Lecture 1. Introduction to Chemical Engineering Calculations

PUMP SYSTEM ANALYSIS AND SIZING. BY JACQUES CHAURETTE p. eng.

Chapter 2 Dimensions, Units, and Unit Conversion

Introduction to Mechanical Engineering Measurements Two Main Purposes of Measurements Engineering experimentation Operational systems

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 4 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

FUNDAMENTALS OF GAS DYNAMICS

Introduction to Fluid Mechanics. Chapter 13 Compressible Flow. Fox, Pritchard, & McDonald

Fundamentals of Thermodynamics

FUNDAMENTALS OF GAS DYNAMICS

Chapter 2 SOLUTION 100 = km = h. = h. ft s

ME3250 Fluid Dynamics I

Fundamentals of Gas Dynamics (NOC16 - ME05) Assignment - 10 : Solutions

UNIT 1 UNITS AND DIMENSIONS

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g)

IX. COMPRESSIBLE FLOW. ρ = P

APPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES

Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 3 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

UNIT CONVERSIONS User Guide & Disclaimer

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois

FDE 211 MATERIAL & ENERGY BALANCES. Instructor: Dr. Ilgin Paker Yikici Fall 2015

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10

Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics common core standards. Dr. Janel Hanrahan

Thermodynamics System Surrounding Boundary State, Property Process Quasi Actual Equilibrium English

Chapter 1 Dimensions, Units, and Their Conversion

Thermodynamics-1. S. M. Hosseini Sarvari Chapter 1 Introduction & Basic Concepts

READ ONLY. Adopting Agency BSC SFM. Adopt Entire Chapter X X X X X X X X X Adopt Entire Chapter as amended (amended sections listed below)

Chapter 1 Introduction and Basic Concepts

NEBB Fundamental Formulas

UNITS FOR THERMOMECHANICS

03 - measures, conversion tables

CHAPTER 1 INTRODUCTION TO ENGINEERING CALCULATIONS

Unit A-1: List of Subjects

ENGR 292 Fluids and Thermodynamics

Applied Fluid Mechanics

Materials and Energy Balance in Metallurgical Processes. Prof. S. C. Koria. Department of Materials Science and Engineering

ES201 - Examination 2 Fall Instructor: NAME BOX NUMBER

Summary of common Pressure Units Version 1.00, 12/15/2003

Index to Tables in SI Units

Tech Tip. Consistent Engineering Units In Finite Element Analysis

Common Terms, Definitions and Conversion Factors

PDHengineer.com Course O-5001

Water and Steam Properties USER GUIDE

Principles of Food and Bioprocess Engineering (FS 231) Example Problems on Units and Dimensions

7. (2) Of these elements, which has the greatest number of atoms in a mole? a. hydrogen (H) b. oxygen (O) c. iron (Fe) d. gold (Au) e. all tie.

ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES

UNITS AND DEFINITIONS RELATED TO BIOMECHANICAL AND ELECTROMYOGRAPHICAL MEASUREMENTS

IAPWS-IF97 Water and Steam Properties DEMO VERSION USER GUIDE. Copyright Fluidika Techlabs S de RL de CV. All Rights Reserved.

Orifice and Venturi Pipe Flow Meters

IAPWS-IF97 Water and Steam Properties. MATLAB Functions Library DEMO VERSION USER GUIDE

Applied Gas Dynamics Flow With Friction and Heat Transfer

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name:

USER GUIDE. IAPWS-IF97 Water and Steam Properties. MATLAB Functions Library. Windows Operating System SI and I-P Units Version 2.0

US Customary System (USC) Systeme Internationale (SI) Prefixes. Units & Significant Figures

6.1 According to Handbook of Chemistry and Physics the composition of air is

Why do we need to study thermodynamics? Examples of practical thermodynamic devices:

Readings for this homework assignment and upcoming lectures

Final 1. (25) 2. (10) 3. (10) 4. (10) 5. (10) 6. (10) TOTAL = HW = % MIDTERM = % FINAL = % COURSE GRADE =

SPC 407 Sheet 5 - Solution Compressible Flow Rayleigh Flow

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

Review of Fluid Mechanics

One-Dimensional Isentropic Flow

INTERNATIONAL SYSTEM OF UNITS

Download Solution Manual for Thermodynamics for Engineers 1st Edition by Kroos and Potter

Orifice and Venturi Pipe Flow Meters

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., June 2003

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Campus Mail Box. Circle One: Richards 03 Richards 04 Lui 05 Lui - 06

To receive full credit all work must be clearly provided. Please use units in all answers.

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

SIZING 2 E DEFINITIONS AND UNITS OF MEASUREMENT 2.1 CALCULATION OF THE ACCUMULATOR 2.2

Thermodynamics Basics, Heat Energy and Power By

IE 211 INTRODUCTION TO ENGINEERING THERMODYNAMICS

Chapter 1 - Basic Concepts. Measurement System Components. Sensor - Transducer. Signal-conditioning. Output. Feedback-control

US Customary System (USC)

SARDAR RAJA COLLEGES

SST Tag: Message: (32 characters)

0. Background Knowledge

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

The word thermodynamics is derived from two Greek words Therm which means heat Dynamis which means power

Multistage Rocket Performance Project Two

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Lecture 1 INTRODUCTION AND BASIC CONCEPTS

ANSI/AMCA Standard (R2012) Laboratory Methods of Testing Air Curtain Units for Aerodynamic Performance Rating

T m / A. Table C2 Submicroscopic Masses [2] Symbol Meaning Best Value Approximate Value

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

INTRODUCTION AND BASIC CONCEPTS. Chapter 1. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

DIMENSIONS AND UNITS

GAS DYNAMICS. M. Halük Aksel. O. Cahit Eralp. and. Middle East Technical University Ankara, Turkey

Introduction. In general, gases are highly compressible and liquids have a very low compressibility. COMPRESSIBLE FLOW

Technical English -I 3 rd week SYSTEMS OF UNITS

Chapter 2 Solutions. 2.1 (D) Pressure and temperature are dependent during phase change and independent when in a single phase.

Chapter 1 Introduction

Name: 10/21/2014. NE 161 Midterm. Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each.

Fluid Mechanics Introduction

Instructor: Zerefşan Kaymaz TABLE: SELECTED DIMENSIONAL EQUIVALENTS

Transcription:

Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi Ref. Fundamentals of Gas Dynamics, 2e - R. Zucker, O. Biblarz Appendixes A. B. C. D. E. F. G. H. I. J. K. L. Summary of the English Engineering (EE) System of Units Summary of the International System (SI) of Units Friction-Factor Chart Oblique-Shock Charts (γ = 1.4) (Two-Dimensional) Conical-Shock Charts (γ = 1.4) (Three-Dimensional) Generalized Compressibility Factor Chart Isentropic Flow Parameters (γ = 1.4) (including Prandtl Meyer Function) Normal-Shock Parameters (γ = 1.4) Fanno Flow Parameters (γ = 1.4) Rayleigh Flow Parameters (γ = 1.4) Properties of Air at Low Pressures Specific Heats of Air at Low Pressures 395

APPENDIX A Summary of the English Engineering (EE) System of Units 396

SUMMARY OF THE ENGLISH ENGINEERING (EE) SYSTEM OF UNITS Force Mass Length Time Temperature pound force pound mass foot second Rankine lbf lbm ft sec R NEVER say pound, as this is ambiguous! It is either a pound force (lbf) or a pound mass (lbm). A 1-pound force will give a 1-pound mass an acceleration of 32.174 feet/second2. F = 1(lbf) = ma gc 1 (lbm) 32.174 (ft/sec2 ) gc Thus gc = 32.174 lbm-ft/lbf-sec2 Temperature Gas constant Pressure Heat to work Power Standard gravity * M.M., molecular mass. T ( R) R 1 atm 1 Btu 1 hp g0 = = = = = = T ( F) + 459.67 1545/M.M.* ft-lbf/1bm- R 2116.2 lbf/ft2 778.2 ft-lbf 550 ft-lbf/sec 32.174 ft/sec2 397

398 APPENDIX A Useful Conversion Factors To convert from: To: Multiply by: meter meter newton kilogram K joule kwh joule watt m/s m/s km/h N/m2 N/m2 N/m2 kg/m3 N s/m2 m2/s J/kg K N m/kg K foot inch lbf lbm R Btu Btu ft-lbf horsepower ft/sec mph mph atmosphere lbf/in2 lbf/ft2 lbm/ft3 lbf-sec/ft2 ft2/sec Btu/lbm- R ft-lbf/lbm- R 3.281 3.937 10 2.248 10 1 2.205 1.800 9.479 10 4 3.413 103 7.375 10 1 1.341 10 3 3.281 2.237 6.215 10 1 9.872 10 6 1.450 10 4 2.089 10 2 6.242 10 2 2.089 10 2 1.076 10 2.388 10 4 1.858 10 1 (q) (q) (w) (V ) (V ) (V ) (p) (p) (p) (ρ) (µ) (ν) (cp ) (R) Source: The International System of Units, NASA SP-7012, 1973.

399 a 39.94 Ar CO2 CO He H2 CH4 N2 O2 H2O Argon Carbon dioxide Carbon monoxide Helium Hydrogen Methane Nitrogen Oxygen Water vapor 1.33 1.40 1.40 1.32 1.41 1.67 1.40 1.29 1.67 1.40 cp γ = cv 85.7 48.3 55.1 96.4 766 386 55.2 35.1 38.7 53.3 Gas Constant R ft-lbf/lbm- R Values for γ, R, cp, cv, and µ are for normal room temperature and pressure. 18.02 32.00 28.02 16.04 2.02 4.00 28.01 44.01 28.97 Symbol Air Gas Molecular Mass Properties of Gases English Engineering (EE) System a 0.445 0.218 0.248 0.532 3.42 1.25 0.248 0.203 0.124 0.240 0.335 0.156 0.177 0.403 2.43 0.750 0.177 0.157 0.074 0.171 Specific Heats Btu/lbm- R cp cv 343.9 227.1 278.6 1165.3 2.3 10 7 3.6 10 7 7 2.2 10 7 4.2 10 1.9 10 59.9 240 3.7 10 7 9.5 547.5 3.1 10 7 7 272 4.7 10 7 4.2 10 7 239 3.8 10 7 3204 736 492 673 188.1 33.2 507 1071 705 546 Critical Point Tc pc R psia Viscosity µ lbf-sec/ft2

APPENDIX B Summary of the International System (SI) of Units 400

SUMMARY OF THE INTERNATIONAL SYSTEM (SI) OF UNITS Force Mass Length Time Temperature newton kilogram meter second kelvin N kg m s K A 1-Newton force will give a 1-kilogram mass an acceleration of 1 meter/second2. F = 1(N) = ma gc 1 (kg) 1 (m/s2 ) gc Thus gc = 1 kg m/n s2 Temperature Gas constant Pressure Heat to work Power Standard gravity * M.M., molecular mass. T (K) R 1 atm 1 pascal (Pa) 1 bar (bar) 1 MPa 1 joule (J) 1 watt (W) g0 = = = = = = = = = T ( C) + 273.15 8314/M.M.* N m/kg K 1.013 105 N/m2 1 N/m2 1 105 N/m2 1 106 N/m2 1N m 1 J/s 9.81 m/s2 401

402 APPENDIX B Useful Conversion Factors To convert from: To: Multiply by: foot inch lbf lbm R Btu Btu ft-lbf horsepower ft/sec mph mph atmosphere lbf/in2 lbf/ft2 lbm/ft3 lbf-sec/ft2 ft2/sec Btu/lbm- R ft-lbf/lbm- R meter meter newton kilogram K joule kwh joule watt m/s m/s km/h N/m2 N/m2 N/m2 kg/m3 N s/m2 m2/s J/kg K N m/kg K 3.048 10 1 2.54 10 2 4.448 4.536 10 1 5.555 10 1 1.055 103 2.930 10 4 1.356 7.457 102 3.048 10 1 4.470 10 1 1.609 1.013 105 6.895 103 4.788 10 1.602 10 4.788 10 9.290 10 2 4.187 103 5.381 (q) (q) (w) (V ) (V ) (V ) (p) (p) (p) (ρ) (µ) (ν) (cp ) (R) Source: The International System of Units, NASA SP-7012, 1973.

403 a 39.94 Ar CO2 CO He H2 CH4 N2 O2 H2O Argon Carbon dioxide Carbon monoxide Helium Hydrogen Methane Nitrogen Oxygen Water vapor 1.33 1.40 1.40 1.32 1.41 1.67 1.40 1.29 1.67 1.40 cp γ = cv 461 260 296 519 4,120 2,080 297 189 208 287 Gas Constant R N m/kg K Values for γ, R, cp, cv, and µ are for normal room temperature and pressure. 18.02 32.00 28.02 16.04 2.02 4.00 28.01 44.01 28.97 Symbol Air Gas Molecular Mass Properties of Gases International System (SI) a 1,860 913 1,040 2,230 14,300 5,230 1,040 850 519 1,000 1,400 653 741 1,690 10,200 3,140 741 657 310 716 Specific Heats J/kg K cp cv 304.1 133.3 1.5 10 5 1.8 10 5 33.3 191.0 126.2 154.8 647.3 1.1 10 5 1.7 10 5 5 1.1 10 5 2.0 10 9.1 10 5 5.28 151.1 2.3 10 5 2.0 10 5 132.8 22.09 5.07 3.39 4.64 1.30 0.229 3.49 7.38 4.86 3.76 Critical Point Tc pc K MPa 1.8 10 5 Viscosity µ N s/m2

APPENDIX C Friction-Factor Chart 404

405 Figure AC.1 Moody diagram for determination of friction factor. (Adapted with permission from L. F. Moody, Friction factors for pipe flow, Transactions of ASME, Vol. 66, 1944.)

APPENDIX D Oblique-Shock Charts (γ = 1.4) (Two-Dimensional) 406

OBLIQUE-SHOCK CHARTS (γ = 1.4) 407 Figure AD.1 Shock-wave angle θ as a function of the initial Mach number M1 for different values of the flow deflection angle δ for γ = 1.4. (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

408 APPENDIX D Figure AD.2 Mach number downstream M2 for an oblique-shock wave as a function of the initial Mach number M1 for different values of the flow deflection angle δ for γ = 1.4. (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

OBLIQUE-SHOCK CHARTS (γ = 1.4) 409 Figure AD.3 Static pressure ratio p2 /p1 across an oblique-shock wave as a function of the initial Mach number M1 for different values of the flow deflection angle δ for γ = 1.40. (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

APPENDIX E Conical-Shock Charts (γ = 1.4) (Three-Dimensional) at 410

CONICAL-SHOCK CHARTS (γ = 1.4) 411 c c Figure AE.1 Shock wave angle θc for a conical-shock wave as a function of the initial Mach number M1 for different values of the cone angle δc for γ = 1.40. (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

412 APPENDIX E c Figure AE.2 Surface Mach number Ms for a conical-shock wave as a function of the initial Mach number M1 for different values of the cone angle δc for γ = 1.40. (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

CONICAL-SHOCK CHARTS (γ = 1.4) 413 c Figure AE.3 Surface static pressure ratio ps /p1 for a conical-shock wave as a function of the initial Mach number M1 for different values of the cone angle δc for γ = 1.40. (Adapted with permission from M. J. Zucrow and J. D. Hoffman, Gas Dynamics, Vol. I, copyright 1976, John Wiley & Sons, New York.)

APPENDIX F Generalized Compressibility Factor Chart 414

GENERALIZED COMPRESSIBILITY FACTOR CHART 415 Figure AF.1 Generalized compressibility factors (Zc = 0.27). (With permission from R. E. Sontag, C. Borgnakke, and C. J. Van Wylen, Fundamentals of Thermodynamics, 5th ed., copyright 1997, John Wiley & Sons, New York.)

APPENDIX G Isentropic Flow Parameters (γ = 1.4) (including Prandtl Meyer Function) 416

ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 417 µ

418 M APPENDIX G p/pt T /Tt A/A pa/pt A ν µ

ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 419 µ

420 M APPENDIX G p/pt T /Tt A/A pa/pt A ν µ

ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 421 µ

422 M APPENDIX G p/pt T /Tt A/A pa/pt A ν µ

ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 423 µ

424 M APPENDIX G p/pt T /Tt A/A pa/pt A ν µ

ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 425 µ

426 M APPENDIX G p/pt T /Tt A/A pa/pt A ν µ

ISENTROPIC FLOW PARAMETERS (γ = 1.4) (INCLUDING PRANDTL MEYER FUNCTION) M p/pt T /Tt A/A pa/pt A ν 427 µ

APPENDIX H Normal-Shock Parameters (γ = 1.4) 428

NORMAL-SHOCK PARAMETERS (γ = 1.4) M1 M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 429 pt2 /p1

430 M1 APPENDIX H M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 pt2 /p1

NORMAL-SHOCK PARAMETERS (γ = 1.4) M1 M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 431 pt2 /p1

432 M1 APPENDIX H M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 pt2 /p1

NORMAL-SHOCK PARAMETERS (γ = 1.4) M1 M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 433 pt2 /p1

434 M1 APPENDIX H M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 pt2 /p1

NORMAL-SHOCK PARAMETERS (γ = 1.4) M1 M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 435 pt2 /p1

436 M1 APPENDIX H M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 pt2 /p1

NORMAL-SHOCK PARAMETERS (γ = 1.4) M1 M2 p2 /p1 T2 /T1 7V /a1 pt2 /pt1 437 pt2 /p1

APPENDIX I Fanno Flow Parameters (γ = 1.4) 438

FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 439 Smax /R

440 M APPENDIX I T /T p/p pt /pt V /V f Lmax /D Smax /R

FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 441 Smax /R

442 M APPENDIX I T /T p/p pt /pt V /V f Lmax /D Smax /R

FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 443 Smax /R

444 M APPENDIX I T /T p/p pt /pt V /V f Lmax /D Smax /R

FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 445 Smax /R

446 M APPENDIX I T /T p/p pt /pt V /V f Lmax /D Smax /R

FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 447 Smax /R

448 M APPENDIX I T /T p/p pt /pt V /V f Lmax /D Smax /R

FANNO FLOW PARAMETERS (γ = 1.4) M T /T p/p pt /pt V /V f Lmax /D 449 Smax /R

APPENDIX J Rayleigh Flow Parameters (γ = 1.4) 450

RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 451 Smax /R

452 APPENDIX J M Tt /Tt T /T p/p pt /pt V /V Smax /R

RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 453 Smax /R

454 APPENDIX J M Tt /Tt T /T p/p pt /pt V /V Smax /R

RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 455 Smax /R

456 APPENDIX J M Tt /Tt T /T p/p pt /pt V /V Smax /R

RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 457 Smax /R

458 APPENDIX J M Tt /Tt T /T p/p pt /pt V /V Smax /R

RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 459 Smax /R

460 APPENDIX J M Tt /Tt T /T p/p pt /pt V /V Smax /R

RAYLEIGH FLOW PARAMETERS (γ = 1.4) M Tt /Tt T /T p/p pt /pt V /V 461 Smax /R