Hyper-Mobile Water around Ions, Charged Polymers, and Proteins Observed with High Resolution Microwave Dielectric Spectroscopy

Similar documents
CORRELATION BETWEEN STANDARD ENTHALPY OF FORMATION AND REFRACTIVE INDEX IN ALKALI HALIDES

Journal of Atoms and Molecules


Use of Stable Analogs of Myosin ATPase Intermediates for Kinetic Studies of the Weak Binding of Myosin Heads to F-Actin

HEATS OF MIXING OF MIXED SOLVENT SOLUTIONS OF ALKALI METAL SALTS OF SUBSTITUTED BENZENESULFONIC ACIDS

Interaction of Gold Nanoparticle with Proteins

Protein Synthetic Lipid Interactions

Saturation Transfer Electron Paramagnetic Resonance

A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin

Soft Matter - Theoretical and Industrial Challenges Celebrating the Pioneering Work of Sir Sam Edwards

CHEM Exam 3 - March 31, 2017

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

Role of hydration in nanopore sensing: Hofmeister series, preferential solvation, osmotic stress, and all that

Spectroscopic Constants & Potential Energy Function for Diatomic Molecules

Introduction: actin and myosin

journal of August 2006 physics pp

The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum

PM-491 Permanent Magnet (small type), 1.6 Tesla. Faraday effect

CHEM Exam 3 - March 30, Given in the individual questions on this test.

In biomolecular systems, free energy frequently needs to be

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON

Temperature Control Modes in Thermal Analysis

Ionic effect on the proton transfer mechanism in aqueous solutions

Funsheet 8.0 [SCIENCE 10 REVIEW] Gu 2015

Scholars Research Library. Ultrasonic Studies on Halide Doped Amino Acids

Quantitative Determination of Proteins

A DIELECTRIC STUDY ON HUMAN BLOOD AND PLASMA

Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 6 A

Highly Efficient and Low Toxic Skin Penetrants Composed of Amino Acid Ionic Liquids

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex

Spectrum-resolved Dual-color Electrochemiluminescence Immunoassay for Simultaneous Detection of Two Targets with Nanocrystals as Tags

A mitochondria-targeting fluorescent probe for detection of mitochondrial labile Fe(II) ion

Zn(II) and Cd(II) based complexes for probing the enzymatic hydrolysis of Na 4 P 2 O 7 by Alkaline phosphatase in physiological condition

Complex Permittivity of Sodium Chloride Solutions at Microwave Frequencies

ANALYSIS OF DIELECTRIC, MODULUS, ELECTRO CHEMICAL STABILITY OF PVP ABSA POLYMER ELECTROLYTE SYSTEMS

Quantitative Evaluation of Proteins with Bicinchoninic Acid (BCA): Resonance Raman and Surface-enhanced Resonance Raman Scatteringbased

Study Of Ultrasonic Parameters Of Polyvinyl Butyral

TRANSPORT PROPERTIES OF POLYMER SOLUTIONS A Comparative Approach

Structural study of aqueous solutions of tetrahydrofuran and acetone mixtures using dielectric relaxation technique

'H NMR Techniques in Studies of Transport of Paramagnetic Ions in Multicellular Systems

9.1 Water. Chapter 9 Solutions. Water. Water in Foods

TitleElastically coupled two-dimensional. Citation PHYSICAL REVIEW E (2005), 71(6)

pyridoxal phosphate synthase

Ionic Bond, Latice energy, characteristic of Ionic compounds


Supporting Information for. Concentration dependent effects of bovine serum albumin on graphene

Nuclear Magnetic Resonance Studies of 35Cl, 37C1, 79Br, and 81Br in Aqueous Solution

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13

Reactions in Aqueous Solution

Protein and hydration-water dynamics are decoupled: A new model connecting dynamics and biochemical function is required.

The dielectric properties of charged nanoparticle colloids at radio and microwave frequencies

Measurement of XANES Spectra of Biological Molecules in the Soft X-Ray Region

Calculations of the Oxygen Isotope Fractionation between Hydration Water of Cations and Free Water

Water-Mediated Interactions Between. Trimethylamine-N-Oxide and Urea

The swinging lever-arm hypothesis of muscle contraction Kenneth C. Holmes

Thermodynamic Properties of Polymer Solutions

Mn 12 Single-Molecule Magnet Aggregates as Magnetic Resonance Imaging Contrast Agents

EQUATIONS FOR ROTATIONAL AND TRANSLATIONAL DIFFUSION CONSTANTS

Concentration of Solutions

Research Article. Thermodynamic study of calcium chloride and magnesium chloride in binary aqueous mixtures of sucrose at different temperatures

Chapter 17: Fundamentals of Spectrophotometry

Part (I): Solvent Mediated Aggregation of Carbonaceous Nanoparticles (NPs) Udayana Ranatunga

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions

Available online Research Article

Viscoelasticity of a Single Polymer Chain

I-L Electronic Structure of a Molecule in Solution

A solution is a homogeneous mixture of two or more substances.

Supporting Information

QENS in the Energy Domain: Backscattering and Time-of

Ali Eftekhari-Bafrooei and Eric Borguet. Department of Chemistry, Temple University, Philadelphia PA Supporting information

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

Zetasizer Nano ZSP: A Perfect Tool For Life Science Applications

PHENOLIC POLYMERIZATION USING Fe III -TAML

Measuring the size and shape of macromolecules. Hydrodynamics: study of the objects in water How do the move? Translation Rotation

Chapter 17: Fundamentals of Spectrophotometry

Biomolecules in solution: Computational studies & THz spectra (.3 3 THz)"

PLEASE DO NOT MARK ON THE EXAM. ALL ANSWERS SHOULD BE INDICATED ON THE ANSWER SHEET. c) SeF 4

Describe the formation of an aqueous LiBr solution, when solid LiBr dissolves in water.

lattice formation from gaseous ions

Dielectric Constant and Osmotic Potential from Ion-Dipole Polarization Measurements of KCl- and NaCl-doped Aqueous Solutions.

Redox additive Aqueous Polymer-gel Electrolyte for Electric Double Layer Capacitor

HYDRODYNAMIC STRUCTURE OF BOVINE SERUM ALBUMIN DETERMINED BY

Three Stages of Lysozyme Thermal Stabilization by High and Medium Charge Density Anions

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage

Department of Civil & Environmental Engineering, Washington State University, Pullman, WA 99164, USA

Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima , Japan b

Electron capture dissociation of extremely supercharged protein. ions formed by electrospray ionisation

Supporting Information. Toshiyuki Takamuku a,*, Yasuhito Higuma a, Masaru Matsugami b, Takahiro To a, and. Tatsuya Umecky a

Desalination by Reverse Osmosis on Zeolite Membranes

Entropy. An endothermic reaction can be compared to a ball spontaneously rolling uphill or a pencil lying down springing upright.

12A Entropy. Entropy change ( S) N Goalby chemrevise.org 1. System and Surroundings

Thermal expansion and structure in water and aqueous solutions

FLUORESCENCE STUDY ON TRYPTOPHAN POTASSIUM IODIDE INTERACTION

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization

Recommended Procedures for Labeling. Labeling Proteins with Amine-Reactive ATTO-Labels (NHS-Esters) Introduction

Probing Ca -dependent Conformational Changes in Calmodulin by H/D Exchange: Effect of Ionic Strength and Peptide Binding

Frequency Dependence of Conductivity Characteristics of Seawater Ionic Solution under Magnetic Field

1.8 Thermodynamics. N Goalby chemrevise.org. Definitions of enthalpy changes

Transcription:

Netsu Sokutei 34 5 244-250 2007 10 1 2007 10 17 Hyper-Mobile Water around Ions, Charged Polymers, and Proteins Observed with High Resolution Microwave Dielectric Spectroscopy Makoto Suzuki and Takashi Miyazaki (Received October 1, 2007; Accepted October 17, 2007) A precision microwave dielectric spectroscopic technique has been developed. This technique enables us to analyze hydration properties of ions, polymers, and proteins. φ -scan method gives an image of the information of spatial distribution of dielectric property of water surrounding protein molecules. Fixed φ analysis gives a direct comparison of hydration properties of different solutes. With this technique we analyzed the hydration states of alkali-halides aqueous solutions, charged polymers and proteins such as F- actin solutions. Most of solutes called water structure breakers form hyper-mobile water (HMW) layer around the solutes having higher dielectric relaxation frequency than bulk water. Thus, we may obtain further information of collective properties of water surrounding ions, polymers and biomolecules. Keywords: Microwave dielectric spectroscopy; protein hydration; actin; hyper-mobile water; φ -scan method; dielectric property of water 1950 Samoirov 1) Frank Wen 2) water structure breakers chaotropes negative hydration Hofmeister 3) 4) 5) 2007 The Japan Society of Calorimetry and Thermal Analysis. 244

Hyper-mobile water found around charged solutes in water 20 17 GHz hyper-mobile water, HMW water structure breaker HMW HMW 0.1 20 GHz 6) γ 20 17 GHz β 10 7 s 10 6 Hz 0.1 GHz δ 7) 4 8 GHz δ 20 mg ml 1 6-9) Asami 8) Fig.1 8) 3 1 2 % Fig.1 Complex dielectric constant of a mixture of ellipsoids and solvent. 8) Fig.1 first shell φ Fig.1 second shell φ bovine serum albumin (BSA), horse radish peroxidase (HRP), myoglobin (Mb), lysozyme (Lys), hemoglobin (Hb) Fig.2 ε q" 6 7 GHz 10) ε q" 6 GHz 1 GHz a/f a f 1 GHz ε q" 5 GHz 1 GHz 2.5 f c1, δ 1, φ 1 2 1 2 N b N b 55.6 φ 1/c M c M φ 1 3D 245

0.14 nm ASA 1 N b3d-cal N b Lys HRP α 1 100 110 5 6 GHz 11,12) 6 7 GHz 1 Fig.2 φ 40 50 0.74 ml g 1 2.5 80 20 φ/c 0.002 ml mg 1 44 44 44 HRP Fig.2(a) Fig.2(b) 10 GHz 1 Lys Hb 10 GHz BSA φ f c, δ, N b 2 φ f c δ f c δ ) Fig.2 (a) real part (φ /c 0.002 ml mg 1 ) (b) imaginary part Partial dielectric spectra of hydrated globular protein in solution. φ f c δ φ f c, δ 2 φ φ B φ B φ φ φ φ 20 17 GHz φ 246

Hyper-mobile water found around charged solutes in water HMW φ 1970 Giese 13) 3.8 37.8 GHz CsF τ r KCl, KBr, KI, RbCl, CsCl water structure breakers τ r 1/2π f c, f c : F Li, Na 1 26 GHz 203 0.02 NaF NaI 0.1 M, 10 Fig.3,4 2 GHz ε q" σ /2πf σ : 1 GHz a/f a 1 GHz a NaF φ ε q' φ 0.1 M φ 0.075 Na F 1 40 φ 0.075 δ i/[1 i(f/f ci)] 40 8.5 GHz 14.5 GHz 12.6 GHz Fig.3 φ -scan spectra of 0.1 M NaF aqueous solution at 10. Fig.4 φ -scan spectra of 0.1 M NaI aqueous solution at 10. f c HMW 5 NaI 0.1 M φ 0.125 Na I 1 67 16 GHz HMW Na 1 26 GHz NaF HMW Giese NaI HMW HMW1.3 HMW63 247

Electric field strength / MV m 1 polymer surfacr (a) Distance / nm Fig.5 Rough estimation of electric field strength around polyionenes. (b) - [(- CH 2 -) x -N (Br )(CH 3) 2] n - - CH 2 - x I HMW 40 100 MV m 1 HMW x 2, 3, 4, 6 0.1M Fig.5 x 2, 3HMW x 6 x 2 6 20 mg ml 1 φ Fig.6 x 2 x 6 1950 Huxley 14) S1 1971 Huxley Simmons 15) 1990 3 16) 1993 S1 3 17) X 18) Fig.6 φ -scan spectra of polyionene aqueous solution at 20. (a) x 2, (b) x 6, c 20 mg ml 1. 1 19) ATP Kodama 20) S1 ATP Gopal Burke 21) S1 ATPS1 Katoh Morita 22) S1 ATP Fig.7 248

Hyper-mobile water found around charged solutes in water Dielectric constant of hydrated protein in solution Fig.7 Partial dielectric spectra of F-actin, myosin S1 and Acto-S1. φ/c 0.002 ml mg 1, φ : c : mg ml 1 10 20 mg ml 1, 2 mm HEPES (ph 7.2), 0.2 mm ATP, 0.1 mm CaCl 2, 50 mm KCl, 2 mm MgCl 2 Fig.7 6 GHz S1 6 GHz 20 GHz 7 GHz S1 20 GHz 7 GHz HMW Fig.1 2 7 GHz 1200 δ 1 45 40 GHz HMW 1400 5) δ 2 75 δ 2 60 δ 2 60 F-actin HMW 30 % 1800 F-actin 10 26 GHz HMW Thomasson 23) 40 100 MV m 1 S1 Fig.7 S1 10 GHz φ φ/c 0.002 ml mg 1 S1 1 7 GHz 17 GHz 10 GHz S1 4 20 GHz HMW F-actin S1 Fig.7 6 GHz F-actin 7 GHz 20 GHz S1, F- S1 0.73 0.74 ml mg 1 HMW S1ASA1100 2 24) 100 25) HMW 1950 Samoilov Frank Wen 40 100 MV m 1 17 GHz I, Br HMW NMR S1 ATP S1 S1 S1 5,23) HMW 249

16041203, 17040004, 18031004 CREST/JST 1) O. Ya., " ",, (1967). 2) H. S. Frank and W-Y. Wen, Discuss. Faraday, Soc. 44, 133 (1957). 3) K. D. Collins, Biophys. J. 72, 65 (1997). 4),,, p.171 and p.181 (1980). 5) S. R. Kabir, K. Yokoyama, K. Mihashi, T. Kodama, and M. Suzuki, Biophys. J. 85, 3154 (2003). 6) E. H. Grant, R. J. Sheppard, and G. P. South, Dielectric behaviour of biological molecules in solution, 1-6, Clarendon Press, Oxford (1978). 7) E. H. Grant, S. E. Keefe, and S. Takashima, J. Phys. Chem. 72, 4373 (1968). 8) K. Asami, T. Hanai, and N. Koizumi, Biophys. J. 31, 215 (1980). 9) T. Hanai, Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions, Kolloid-Z. 171, 23 (1960). 10) K. Yokoyama, T. Kamei, H. Minami, and M.Suzuki, J. Phys. Chem. B. 105, 12622 (2001). 11) M. Suzuki, J. Shigematsu, Y. Fukunishi, and T. Kodama, J. Phys. Chem. B 101, 3839 (1997). 12),, 38, 9 (1998). 13) K. Giese, U. Kaatze, and R. Pottel, J. Phys. Chem. 74, 3718 (1970). 14) H. E. Huxley and J. Hanson, Nature 173, 973 (1954). 15) A. F. Huxley and R. M. Simmons, Nature 233, 533 (1971). 16) W. Kabsch, H. C. Mannherz, D. Suck, E. Pai, and K. C. Holmes, Nature 347, 37 (1990). 17) I. Rayment, W. R. Rypniewski, K. Schmidt-Base, R. Smith, D. R. Tomchik, M. M. Benning, D. A. Winkelmann, G. Wesenberg, and H. M. Holden, Science 261, 50 (1993). 18) C. T. Murphy and J. A. Spudich, J Muscle Res Cell Motil. 21,139 (2000). 19),,, (1997). 20) T. Kodama, Physiological Review, 65, 467 (1985). 21) D. Gopal and M. Burke, Biochemistry 35, 506 (1996). 22) T. Katoh and F. Morita, J. Biochemistry 120, 189 (1996). 23) I. V. Ouporov, H. R. Knull, A. Huber, and K. A. Thomasson, Biophys J. 80, 2527 (2001). 24) R. Mendelson and E. P. Morris, Proc. Nat. Acad. Sci. USA 94, 8533 (1997). 25) M. Suzuki, S. R. Kabir, M. S. P. Siddique, U. S. Nazia, T. Miyazaki, and T. Kodama, Biochem. Biophys. Res. Comm. 322, 340 (2004). φ Makoto Suzuki, Graduate School of Engineering, Tohoku Univ., TEL. 022-795-7303, FAX. 022-795-7303, e-mail: msuzuki@material.tohoku.ac.jp Takashi Miyazaki, Graduate School of Engineering, Tohoku Univ., TEL. 022-795-7313, FAX. 022-795-7313, e-mail: miya@material.tohoku.ac.jp 250