Supporting Information for. Concentration dependent effects of bovine serum albumin on graphene

Size: px
Start display at page:

Download "Supporting Information for. Concentration dependent effects of bovine serum albumin on graphene"

Transcription

1 Supporting Information for Concentration dependent effects of bovine serum albumin on graphene oxide colloidal stability in aquatic environment Binbin Sun, Yinqing Zhang, Wei Chen, Kunkun Wang, Lingyan Zhu Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin , P. R. China Summary Number of Pages: 18 Page S2-S5: Calculation of (X)DLVO interaction energy Page S6-S16: Figure S1 Figure S11 Page S17-S18: References To whom correspondence should be addressed. Phone: Fax: S1

2 Calculation of (X)DLVO interaction energy According to the DLVO theory, the total interaction energy between GO nanoparticles, VTOT (KBT), can be modeled as the integration of the attractive van der Waals attraction, V VDW (K B T), and electrostatic double-layer repulsion forces, V EDL (K B T). 1 It should be mentioned that all the above interaction energies are normalized by K B T. V TOT = V VDW + V EDL (S1) The attractive van der Waals attraction is calculated using Hamaker approach and Gregory s formulation: 2 V VDW = Ar NP 6h(1+ 14h λ ) (S2) Where A is the Hamaker constant for GO nanoparticles ( J was used in this study); r NP is the radius of nanoparticles (m), h is the separation distance between nanoparticles (m); λis the characteristic wavelength 100 nm. The electrostatic double-layer repulsion could be calculated as follows: 3 V EDL = πr NP ε 0 ε r 2ϕ 1 ϕ 2 ln 1+exp(-κh) +(ϕ 2 +ϕ 2 1-exp(-κh 1 2 ) ln 1-exp(-2κh) (S3) Where ε 0 is the vacuum permittivity ( C 2 /Jm), ε r is the relative dielectric permittivity of water (78.4), ϕ 1 and ϕ 2 are the surface potentials of GO nanoparticles. κ (cm -1 ) is the Debye reciprocal length and can be calculated by using the equation: 4 κ= 2N A Ie 2 Tε r ε 0 K B (S4) Where N A is the Avogadro number ( mol -1 ), e is the electron charge ( C), I is the ionic strength of the background electrolyte (mol/m 3 ), K B is Boltzmann constant ( J/K), and T is Kelvin temperature (298 K). If the particles were stabilized by BSA molecules, two traditional repulsive potentials should be S2

3 considered: a repulsive osmotic energy term, V osm and elastic steric repulsion, V elas. 5 V osm is due to the exclusion of water molecules surrounding the polymers on the close particle-surface approach. V osm 0 kbt = 2d h V 4r π 1 h φ χ k T 2 2 osm NP 2 = p d B υ1 Vosm 4rNPπ 2 1 h 1 h = φ p χ ln kbt υ1 2 2d 4 d 2 d h< 2d h> d Where υ 1 is the volume of a solvent molecule (0.03 nm 3 ); χ is the Flory-Huggins solvency parameter. BSA is relatively hydrophilic polymers, and have the similar globular structure and molecular weight to virus, so 0.49 chosen here. 6-8 d was the thickness of adsorption layer (4.9 nm), calculated by the Ohshima s soft theory. φ p is the calculated volume fraction of polymer within the brush layer. φ Γ r 2 max NP p = ρp ( d+ rnp) rnp Γ max is the maximum surface concentration (Kg/m 2 ). Based on the unique two-dimensional structure of GO and the BET surface area of GO powder was not accurate for the surface area of GO. The theoretical specific surface area of graphene 2630 m 2 /g was used here. 9 The sorption experiments indicated that the saturation adsorption amount of BSA on GO was 2000 mg/g. After calculation, the Γ max is 0.76E-06 Kg/m 2. The compression of the adsorbed BSA layer below the thickness of the unperturbed layer (d) leads to a loss of entropy and gives rise to the elastic repulsion (V elas ): Velas 0 k T = d h B S3

4 2 h h Velas 2π r NP 2 2 h h h pd p ln d φ ρ 6ln d = kbt MW d d 2 2 d d > h Where M W is the molecular weight of the BSA: 67 Kg/mol. ρ p was the density of BSA, 1.41 g/cm 3. Previous research indicated that for proteins with high molecular weight, a value ρ p =1.41 g/cm The total extended DLVO (XDLVO) interaction energy is: VTOT = VVDW + VEDL + Vosm + Velas Ohshima s Soft Particle Theory: In this study, the characteristics of adsorbed organic matter layers (layer thickness, d, soft parameter, λ f and charged density, ZN) was obtained by fitting EPM data (µ e ) of GO NPs in the presence of BSA with Ohshima s soft theory. 5, 11 Specially, the detailed calculation formula was as follows: κ ε ε ϕ / κ + ϕ d ezn 8 ε ε k T zeζ e / λ e / κ µ e = + + λd md r 0 0 m DON r 0 B m f tanh η 1/ κ m+ 1/ λ a ηλ ηλze 4kBT 1/ λ 1/ κm Where µ e is the electrophoretic mobility (EPM). η is the water viscosity, λ is the softness parameter. κ m is the Debye-Hückel parameter of the surface layer. ψ 0 is the surface potential at the boundary of the adsorbed layer and the bulk solution. ψ DON is the Donnan potential within the adsorbed layer. Z is the valance of the charged functional groups in the adsorbed layer, N is the number density of the charged groups. Z is the valence of bulk ions, and ζ is the ζ-potential of the bare particles. The equations for ψ DON, ψ 0, f (d/a), and κ m are given below. ψ DON 2 kbt ZN ZN = ln ze 2zn 2zn 1/2 S4

5 ψ 2 1/2 2 1/2 kbt ZN ZN 2zn ZN 4kBT κmd zeζ 0 = ln e tanh ze 2zn 2zn ZN 2zn ze 4kBT d 2 1 f = 1 + a d / a 2 1/4 ZN κm κ = 1+ 2zn ( ) 3 Where n is the concentration of bulk ions. The three parameters (d, λf, and ZN) were unknown. The MATLAB (the Mathworks, Novi, MI) code employing iterative least squares minimization was used for this fitting the EPM data. The fitted results indicated that the parameters obtained by the theory were good. After calculation, the fitting results were as follows: S5

6 Figure S1. (A) The representative atomic force microscopy (AFM) image of GO. (B) Distribution of lateral size of GO, which was obtained by at least 150 GO nanosheets from five different AFM images. S6

7 Figure S2. The adsorption isotherms of BSA on GO (200 mg/l) at ph 5.5 and 25 C. S7

8 Figure S3. Representative aggregation profiles of GO (10 mg/l) as a function of electrolyte concentration and type: (A) NaCl, (B) MgCl 2, (C) CaCl 2 at ph 5.5 ± 0.2 and 25 C. S8

9 Figure S4. Zeta potentials of GO changed as functions of electrolyte concentrations : (A) NaCl, (B) MgCl 2 and CaCl 2 at ph 5.5 ± 0.2 and 25 C. S9

10 Figure S5. The D h of BSA changed as a function of time in the presence of high electrolyte concentration and types at ph 5.5 ± 0.2 and 25 o C. S10

11 Figure S6. The effect of BSA concentration on the aggregation kinetics of GO (10 mg/l) at the fixed salt concentration : (A) 120 mm NaCl, (B) 3.33 mm MgCl 2 and (C) 0.83 mm CaCl 2 at ph 5.5 ± 0.2 and 25. S11

12 mm Na + 50 mm Na + 60 mm Na + 75 mm Na + 90 mm Na mm Na + A mm Mg mm Mg mm Mg mm Mg mM Mg mm Mg 2+ B D h (nm) D h (nm) Time (s) 0.25 mm Ca mm Ca mm Ca mm Ca mm Ca mm Ca 2+ C Time (s) D h (nm) Time (s) Figure S7. Representative aggregation profiles of GO (10 mg/l) in the presence of 2 mg C/L BSA as a function of electrolyte type and concentration: (A) NaCl, (B) MgCl 2, and (C) CaCl 2 at ph 5.5 ± 0.2 and 25 C. S12

13 Figure S8. TEM pictures of GO (10 mg/l) in different solutions after incubation for 5 minutes. (A) GO only, (B) GO + 2 mg C/L BSA, (C) GO + 60 mm NaCl, (D) GO + 60 mm NaCl + 2 mg C/L BSA, (E) GO + 60 mm NaCl + 30 mg C/L BSA. S13

14 Figure S9. The effect of BSA concentration on the initial aggregation kinetics of GO in the absence of electrolyte at ph 5.5 ± 0.2 and 25 C. The BSA concentration was chosen as 0.13, 0.4, 2, 5, 7.5, 10, 15, 20 and 30 mg C/L. S14

15 Figure S10. The effect of adding order on the GO initial aggregation. The GO concentration was kept at 10 mg/l, while the BSA was chosen as 2, 5 and 30 mg C/L in the presence of 60 mm NaCl. S15

16 Figure S11. (X)DLVO particle-particle interaction energy profiles at different solution chemistry conditions. The insets show the close-up of the respective secondary energy minimum region. S16

17 Reference 1. Hogg, R.; Healy, T. W.; Fuerstenau, D. W. Mutual coagulation of colloidal dispersions. Trans. Faraday. Soc. 1966, 62, Gregory, J. Approximate expressions for retarded van der waals interaction. J. Colloid. Interface. Sci. 1981, 83, (1), Elimelech, M.; O'Melia, C. R. Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. Langmuir 1990, 6, (6), Russel, W. B.; Saville, D. A.; Schowalter, W. R. Colloidal Dispersions; Cambridge University Press: Cambridge, Phenrat, T.; Saleh, N.; Sirk, K.; Kim, H.-J.; Tilton, R. D.; Lowry, G. V., Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research 2008, 10, (5), Vincent, B.; Luckham, P. F.; Waite, F. A., The effect of free polymer on the stability of sterically stabilized dispersions. Journal of Colloid and Interface Science 1980, 73, (2), Einarson, M. B.; Berg, J. C., Electrosteric Stabilization of Colloidal Latex Dispersions. Journal of Colloid and Interface Science 1993, 155, (1), Wong, K.; Mukherjee, B.; Kahler, A. M.; Zepp, R.; Molina, M., Influence of Inorganic Ions on Aggregation and Adsorption Behaviors of Human Adenovirus. S17

18 Environmental Science & Technology 2012, 46, (20), Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials 2010, 22, (35), Fischer, H.; Polikarpov, I.; Craievich, A. F., Average protein density is a molecular-weight-dependent function. Protein Science 2004, 13, (10), Nakamura, M.; Ohshima, H.; Kondo, T., Electrophoretic behavior of antigenand antibody-carrying latex particles. Journal of Colloid and Interface Science 1992, 149, (1), S18

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

Electrostatic Forces & The Electrical Double Layer

Electrostatic Forces & The Electrical Double Layer Electrostatic Forces & The Electrical Double Layer Dry Clay Swollen Clay Repulsive electrostatics control swelling of clays in water LiquidSolid Interface; Colloids Separation techniques such as : column

More information

Porous Media Induced Aggregation of Protein- Stabilized Gold Nanoparticles

Porous Media Induced Aggregation of Protein- Stabilized Gold Nanoparticles Supporting Information 3 Porous Media Induced Aggregation of Protein- Stabilized Gold Nanoparticles 4 Matthew Y. Chan, and Peter J. Vikesland* Department of Civil and Environmental Engineering, Virginia

More information

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( ) 3.05 Nanomechanics of Materials and Biomaterials Thursday 04/05/07 Prof. C. Ortiz, MITDMSE I LECTURE 14: TE ELECTRICAL DOUBLE LAYER (EDL) Outline : REVIEW LECTURE #11 : INTRODUCTION TO TE ELECTRICAL DOUBLE

More information

Module 8: "Stability of Colloids" Lecture 38: "" The Lecture Contains: Calculation for CCC (n c )

Module 8: Stability of Colloids Lecture 38:  The Lecture Contains: Calculation for CCC (n c ) The Lecture Contains: Calculation for CCC (n c ) Relation between surface charge and electrostatic potential Extensions to DLVO theory file:///e /courses/colloid_interface_science/lecture38/38_1.htm[6/16/2012

More information

Ionic Strength and Composition affect the mobility of surface-modified

Ionic Strength and Composition affect the mobility of surface-modified Ionic Strength and Composition affect the mobility of surface-modified Fe 0 Nanoparticles in water-saturated sand columns. Navid Saleh 1, Hye-Jin Kim 1, Tanapon Phenrat 1, Krzysztof Matyjaszewski 3, Robert

More information

Aggregation and Deposition Behavior of Carbon-Based Nanomaterials in Aquatic Environments

Aggregation and Deposition Behavior of Carbon-Based Nanomaterials in Aquatic Environments Aggregation and Deposition Behavior of Carbon-Based Nanomaterials in Aquatic Environments Menachem Elimelech Department of Chemical Engineering Environmental Engineering Program Yale University 2007 NSF

More information

Supporting Information

Supporting Information Supporting Information Retention and Release of Graphene Oxide in Structured Heterogeneous Porous Media under Saturated and Unsaturated Conditions Shunan Dong 1, Xiaoqing Shi 1, Bin Gao 3, Jianfeng Wu

More information

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry Colloid stability István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry www.kolloid.unideb.hu (Stability of lyophilic colloids see: macromolecular solutions) Stabilities 1.

More information

Surface Forces & Liquid Films (Answers to Exercise Problems)

Surface Forces & Liquid Films (Answers to Exercise Problems) //5 Surface Forces & Liquid Films (nswers to Exercise Problems) Wuge H. Briscoe wuge.briscoe@bris.ac.uk URL: wugebrisco7.wix.com/briscoegroup Exercise : van der Waals forces & liquid films When octane

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Electrical double layer

Electrical double layer Electrical double layer Márta Berka és István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry http://dragon.unideb.hu/~kolloid/ 7. lecture Adsorption of strong electrolytes from

More information

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Journal of Colloid and Interface Science 263 (2003) 156 161 www.elsevier.com/locate/jcis The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Haohao

More information

The decreasing aggregation of nanoscale zero-valent iron induced by trivalent chromium

The decreasing aggregation of nanoscale zero-valent iron induced by trivalent chromium , 14, 99 105 Supplementary material The decreasing aggregation of nanoscale zero-valent iron induced by trivalent chromium Danlie Jiang, A,B Xialin Hu, A,C Rui Wang, A Yujing Wang B and Daqiang Yin A,C,D

More information

Chapter 6 Stability of Colloidal Suspensions

Chapter 6 Stability of Colloidal Suspensions Chapter 6 Stability of Colloidal Suspensions 6.1 Kinetic Stability of Colloidal Suspensions o G = A f sl sl interfacial surface tension (sol/liq) [J/m 2 ] sol/liq surface change [m 2 ] γ sl > 0 colloid

More information

Overview of DLVO Theory

Overview of DLVO Theory Overview of DLVO Theory Gregor Trefalt and Michal Borkovec Email. gregor.trefalt@unige.ch, michal.borkovec@unige.ch September 29, 214 Direct link www.colloid.ch/dlvo Derjaguin, Landau, Vervey, and Overbeek

More information

Colloid stability. Lyophobic sols. Stabilization of colloids.

Colloid stability. Lyophobic sols. Stabilization of colloids. Colloid stability. Lyophobic sols. Stabilization of colloids. Lyophilic and lyophobic sols Sols (lyosols) are dispersed colloidal size particles in a liquid medium (=solid/liquid dispersions) These sols

More information

Chapter 6 Stability of Colloidal Suspensions

Chapter 6 Stability of Colloidal Suspensions Chapter 6 Stability of Colloidal Suspensions 6.1 Kinetic Stability of Colloidal Suspensions o G = A f sl sl interfacial surface tension (sol/liq) [J/m 2 ] sol/liq surface change [m 2 ] γ sl > 0 colloid

More information

INCLUSION OF ELECTROSTATIC FORCES TO ASSESSMENT OF RATE OF MAGNETIC FORCES IMPACT TO IRON NANOPARTICLE AGGREGATION

INCLUSION OF ELECTROSTATIC FORCES TO ASSESSMENT OF RATE OF MAGNETIC FORCES IMPACT TO IRON NANOPARTICLE AGGREGATION INCLUSION OF ELECTROSTATIC FORCES TO ASSESSMENT OF RATE OF MAGNETIC FORCES IMPACT TO IRON NANOPARTICLE AGGREGATION Dana ROSICKA a, Jan SEMBERA a a Technical University of Liberec, Studentska 2, 461 17

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications History of Nanotechnology: Time Line Democritus in ancient Greece: concept of atom 1900 : Rutherford : discovery of atomic nucleus The first TEM was

More information

Supplementary Information: Triggered self-assembly of magnetic nanoparticles

Supplementary Information: Triggered self-assembly of magnetic nanoparticles Supplementary Information: Triggered self-assembly of magnetic nanoparticles L. Ye 1,3, T. Pearson 1, Y. Cordeau 2, O.T. Mefford 2, and T. M. Crawford 1 1 Smart State Center for Experimental Nanoscale

More information

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled Supporting Information Specific ion effects on the interaction of hydrophobic and hydrophilic self assembled monolayers T. Rios-Carvajal*, N. R. Pedersen, N. Bovet, S.L.S. Stipp, T. Hassenkam. Nano-Science

More information

An Overview of the Concept, Measurement, Use and Application of Zeta Potential. David Fairhurst, Ph.D. Colloid Consultants, Ltd

An Overview of the Concept, Measurement, Use and Application of Zeta Potential. David Fairhurst, Ph.D. Colloid Consultants, Ltd An Overview of the Concept, Measurement, Use and Application of Zeta Potential David Fairhurst, Ph.D. Colloid Consultants, Ltd Fundamental Parameters that control the Nature and Behavior of all Particulate

More information

Single action pressing (from top)

Single action pressing (from top) www.komage.de Single action pressing (from top) Double action pressing with fixed die Typical course of the pressure during pressing and ejection (Single action) Upper punch Pressure Lower punch Time Green

More information

Stability of Fe-oxide nanoparticles coated with natural organic matter (NOM) under relevant environmental conditions

Stability of Fe-oxide nanoparticles coated with natural organic matter (NOM) under relevant environmental conditions Stability of Fe-oxide nanoparticles coated with natural organic matter (NOM) under relevant environmental conditions L. Chekli *, **, S. Phuntsho*, L.D. Tijing*, J. Zhou*, Jong-Ho Kim*** and H.K. Shon*,

More information

Influence of Enterococcal Surface Protein (esp) on the Transport of Enterococcus faecium within Saturated Quartz Sands

Influence of Enterococcal Surface Protein (esp) on the Transport of Enterococcus faecium within Saturated Quartz Sands Influence of Enterococcal Surface Protein (esp) on the Transport of Enterococcus faecium within Saturated Quartz Sands Jennifer J. Johanson, Lucia Feriancikova, Shangping Xu* Department of Geosciences

More information

It is the size of the

It is the size of the Chapter 2: Literature Review (Note: A modified form of this chapter will be published as Rheology and Colloidal Stability in Paints and Coatings, Proceedings of the Association of Formulation Chemists,

More information

Electrophoretic Light Scattering Overview

Electrophoretic Light Scattering Overview Electrophoretic Light Scattering Overview When an electric field is applied across an electrolytic solution, charged particles suspended in the electrolyte are attracted towards the electrode of opposite

More information

DLVO Theory and Non-DLVO Forces

DLVO Theory and Non-DLVO Forces NPTEL Chemical Engineering Interfacial Engineering Module 3: Lecture 5 DLVO Theory and Non-DLVO Forces Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati 781039

More information

Supporting Information

Supporting Information Supporting Information Heteroaggregation of Graphene Oxide with Nanometer- and Micrometer-Sized Hematite Colloids: Influence on Nanohybrid Aggregation and Microparticle Sedimentation Yiping Feng, 1, 2,

More information

Research Article A Modified Method to Calculate Critical Coagulation Concentration Based on DLVO Theory

Research Article A Modified Method to Calculate Critical Coagulation Concentration Based on DLVO Theory Mathematical Problems in Engineering Volume 215, rticle ID 317483, 5 pages http://dx.doi.org/1.1155/215/317483 Research rticle Modified Method to Calculate Critical Coagulation Concentration Based on DLVO

More information

Electrostatic Double Layer Force: Part III

Electrostatic Double Layer Force: Part III NPTEL Chemical Engineering Interfacial Engineering Module 3: Lecture 4 Electrostatic Double Layer Force: Part III Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati

More information

Reactive Nanoparticles for In Situ Groundwater Remediation: Optimizing the Benefits and Mitigating the Risks with Surface Coatings

Reactive Nanoparticles for In Situ Groundwater Remediation: Optimizing the Benefits and Mitigating the Risks with Surface Coatings Reactive Nanoparticles for In Situ Groundwater Remediation: Optimizing the Benefits and Mitigating the Risks with Surface Coatings Gregory V. Lowry, Tanapon Phenrat, Yueqiang Liu, Hye-Jin Kim, Navid Saleh,

More information

Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry

Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Lyophilic and lyophobic sols Sols (lyosols) are dispersed colloidal

More information

Contents. Preface XIII

Contents. Preface XIII V Contents Preface XIII 1 General Introduction 1 1.1 Fundamental Knowledge Required for Successful Dispersion of Powders into Liquids 1 1.1.1 Wetting of Powder into Liquid 1 1.1.2 Breaking of Aggregates

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

Charged Interfaces & electrokinetic

Charged Interfaces & electrokinetic Lecture Note #7 Charged Interfaces & electrokinetic phenomena Reading: Shaw, ch. 7 Origin of the charge at colloidal surfaces 1. Ionization Proteins acquire their charge by ionization of COOH and NH 2

More information

Lin Jin, Yang-Xin Yu, Guang-Hua Gao

Lin Jin, Yang-Xin Yu, Guang-Hua Gao Journal of Colloid and Interface Science 304 (2006) 77 83 www.elsevier.com/locate/jcis A molecular-thermodynamic model for the interactions between globular proteins in aqueous solutions: Applications

More information

ORIGINAL CONTRIBUTION. microgel latex Æ

ORIGINAL CONTRIBUTION. microgel latex Æ Colloid Polym Sci (2002) 280: 1116 1121 DOI 10.1007/s00396-002-0734-8 ORIGINAL CONTRIBUTION Liusheng Zha Jianhua Hu Changchun Wang Shoukuan Fu Meifang Luo The effect of electrolyte on the colloidal properties

More information

Lecture 3 Charged interfaces

Lecture 3 Charged interfaces Lecture 3 Charged interfaces rigin of Surface Charge Immersion of some materials in an electrolyte solution. Two mechanisms can operate. (1) Dissociation of surface sites. H H H H H M M M +H () Adsorption

More information

Investigation of stabilization mechanisms for colloidal suspension using nanoparticles.

Investigation of stabilization mechanisms for colloidal suspension using nanoparticles. University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2014 Investigation of stabilization mechanisms for colloidal suspension using

More information

Surface interactions part 1: Van der Waals Forces

Surface interactions part 1: Van der Waals Forces CHEM-E150 Interfacial Phenomena in Biobased Systems Surface interactions part 1: Van der Waals Forces Monika Österberg Spring 018 Content Colloidal stability van der Waals Forces Surface Forces and their

More information

Part (I): Solvent Mediated Aggregation of Carbonaceous Nanoparticles (NPs) Udayana Ranatunga

Part (I): Solvent Mediated Aggregation of Carbonaceous Nanoparticles (NPs) Udayana Ranatunga Part (I): Solvent Mediated Aggregation of Carbonaceous Nanoparticles (NPs) Udayana Ranatunga Part(II): Dispersibility, Aggregation, and Cytotoxicity of multi-walled carbon nanotubes (MWNTs) Dr. Ruhung

More information

Colloid Science Principles, methods and applications

Colloid Science Principles, methods and applications Colloid Science Principles, methods and applications Second Edition Edited by TERENCE COSGROVE School of Chemistry, University of Bristol, Bristol, UK WILEY A John Wiley and Sons, Ltd, Publication Contents

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

Zeta potential - An introduction in 30 minutes

Zeta potential - An introduction in 30 minutes Zeta potential - An introduction in 30 minutes ZETA POTENTIAL Introduction Zeta potential is a physical property which is exhibited by any particle in suspension, macromolecule or material surface. It

More information

Supplementary Information. Omnidispersible Hedgehog Particles with Multilayer Coatings for. Multiplexed Biosensing

Supplementary Information. Omnidispersible Hedgehog Particles with Multilayer Coatings for. Multiplexed Biosensing Supplementary Information Omnidispersible Hedgehog Particles with Multilayer Coatings for Multiplexed Biosensing Douglas G. Montjoy 1, Joong Hwan Bahng 1,2, Aydin Eskafi 1, Harrison Hou 1, Nicholas A.

More information

Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants

Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants Fuquan Tu, Bum Jun Park and Daeyeon Lee*. Description of the term notionally swollen droplets When particles are adsorbed

More information

Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution

Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution Interaction of Proteins with Nanostructured Latex Particles in Aqueous Solution A. Wittemann, B. Haupt, University of Bayreuth E. Breininger, T. Neumann, M. Rastätter, N. Dingenouts, University of Karlsruhe

More information

Interaction of Gold Nanoparticle with Proteins

Interaction of Gold Nanoparticle with Proteins Chapter 7 Interaction of Gold Nanoparticle with Proteins 7.1. Introduction The interfacing of nanoparticle with biomolecules such as protein is useful for applications ranging from nano-biotechnology (molecular

More information

Supporting Information

Supporting Information Supporting Information Aggregation Kinetics of Citrate and Polyvinylpyrrolidone Coated Silver Nanoparticles in Monovalent and Divalent Electrolyte Solutions KHANH AN HUYNH AND KAI LOON CHEN * Department

More information

Correlation between rheological parameters and some colloidal properties of anatase dispersions

Correlation between rheological parameters and some colloidal properties of anatase dispersions ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 15, 7 Correlation between rheological parameters and some colloidal properties of anatase dispersions A.I. Gómez-Merino, F. J. Rubio-Hernández,

More information

Rights statement Post print of work supplied. Link to Publisher's website supplied in Alternative Location.

Rights statement Post print of work supplied. Link to Publisher's website supplied in Alternative Location. Yield stress-zeta potential relationship of oxide dispersions with adsorbed polyacrylate: Steric effect and zeta potential at the flocculated-dispersed transition state Ong, B. C., Leong, Y-K., & Chen,

More information

ENV/JM/MONO(2015)17/PART1/ANN2

ENV/JM/MONO(2015)17/PART1/ANN2 Unclassified ENV/JM/MONO(2015)17/PART1/ANN2 ENV/JM/MONO(2015)17/PART1/ANN2 Unclassified Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development

More information

Colloidal Crystal: emergence of long range order from colloidal fluid

Colloidal Crystal: emergence of long range order from colloidal fluid Colloidal Crystal: emergence of long range order from colloidal fluid Lanfang Li December 19, 2008 Abstract Although emergence, or spontaneous symmetry breaking, has been a topic of discussion in physics

More information

A comparison of theoretical and experimental aggregation stability of colloidal silica

A comparison of theoretical and experimental aggregation stability of colloidal silica Acta Montanistica Slovaca Ročník 15 (010), číslo 3, 38-43 A comparison of theoretical and experimental aggregation stability of colloidal silica Jiří Škvarla 1 and Lucia Marcinová Absorbance-vs-time dependences

More information

Lattice energy of ionic solids

Lattice energy of ionic solids 1 Lattice energy of ionic solids Interatomic Forces Solids are aggregates of atoms, ions or molecules. The bonding between these particles may be understood in terms of forces that play between them. Attractive

More information

Sanitary Engineering. Coagulation and Flocculation. Week 3

Sanitary Engineering. Coagulation and Flocculation. Week 3 Sanitary Engineering Coagulation and Flocculation Week 3 1 Coagulation and Flocculation Colloidal particles are too small to be removed by sedimentation or by sand filtration processes. Coagulation: Destabilization

More information

Module 8: "Stability of Colloids" Lecture 37: "" The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template

Module 8: Stability of Colloids Lecture 37:  The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template The Lecture Contains: DLVO Theory Effect of Concentration file:///e /courses/colloid_interface_science/lecture37/37_1.htm[6/16/2012 1:02:12 PM] Studying the stability of colloids is an important topic

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

Applied Surfactants: Principles and Applications

Applied Surfactants: Principles and Applications Applied Surfactants: Principles and Applications Tadros, Tharwat F. ISBN-13: 9783527306299 Table of Contents Preface. 1 Introduction. 1.1 General Classification of Surface Active Agents. 1.2 Anionic Surfactants.

More information

Efficient removal of heavy metal ions with EDTA. functionalized chitosan/polyacrylamide double network

Efficient removal of heavy metal ions with EDTA. functionalized chitosan/polyacrylamide double network Supporting Information Efficient removal of heavy metal ions with EDTA functionalized chitosan/polyacrylamide double network hydrogel Jianhong Ma a,b, Guiyin Zhou c, Lin Chu c, Yutang Liu a,b, *, Chengbin

More information

Particle Tracking on. Exosomes. ZetaView. Multiparameter NTA sizing, counting and zeta potential. C. Helmbrecht and H. Wachernig

Particle Tracking on. Exosomes. ZetaView. Multiparameter NTA sizing, counting and zeta potential. C. Helmbrecht and H. Wachernig Particle Tracking on Exosomes ZetaView Multiparameter NTA sizing, counting and zeta potential C. Helmbrecht and H. Wachernig Visual inspection of video 20130429_0009_269Exo9h_Dil10000 Agglomerates Approx.

More information

Potential changes of the cross section for rectangular microchannel with different aspect ratios

Potential changes of the cross section for rectangular microchannel with different aspect ratios Korean J. Chem. Eng., 24(1), 186-190 (2007) SHORT COMMUNICATION Potential changes of the cross section for rectangular microchannel with different aspect ratios Hyo Song Lee, Ki Ho Kim, Jae Keun Yu, Soon

More information

Introduction to the calculators in the Zetasizer software

Introduction to the calculators in the Zetasizer software Introduction to the calculators in the Zetasizer software PARTICLE SIZE ZETA POTENTIAL MOLECULAR WEIGHT MOLECULAR SIZE Introduction The calculators are a series of tools in the Zetasizer software that

More information

ISO Colloidal systems Methods for zetapotential. Part 1: Electroacoustic and electrokinetic phenomena

ISO Colloidal systems Methods for zetapotential. Part 1: Electroacoustic and electrokinetic phenomena INTERNATIONAL STANDARD ISO 13099-1 First edition 2012-06-15 Colloidal systems Methods for zetapotential determination Part 1: Electroacoustic and electrokinetic phenomena Systèmes colloïdaux Méthodes de

More information

Supporting Online Material. On-Chip Dielectrophoretic Co-Assembly of Live Cells and. Particles into Responsive Biomaterials

Supporting Online Material. On-Chip Dielectrophoretic Co-Assembly of Live Cells and. Particles into Responsive Biomaterials Supporting Online Material On-Chip Dielectrophoretic Co-Assembly of Live Cells and Particles into esponsive Biomaterials Shalini Gupta, ossitza G. Alargova, Peter K. Kilpatrick and Orlin D. Velev* Description

More information

Intermolecular and Surface Forces

Intermolecular and Surface Forces Intermolecular and Surface Forces ThirH FHitinn '' I I 111 \J& LM* КтЛ I Km I W I 1 Jacob N. Israelachvili UNIVERSITY OF CALIFORNIA SANTA BARBARA, CALIFORNIA, USA AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES

SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES SOLUTIONS TO CHAPTER 5: COLLOIDS AND FINE PARTICLES EXERCISE 5.1: Colloidal particles may be either dispersed or aggregated. (a) What causes the difference between these two cases? Answer in terms of interparticle

More information

Frequency Dependence of Conductivity Characteristics of Seawater Ionic Solution under Magnetic Field

Frequency Dependence of Conductivity Characteristics of Seawater Ionic Solution under Magnetic Field Frequency Dependence of Conductivity Characteristics of Seawater Ionic Solution under Magnetic Field Shaoshuai GUO 1,a, Xueyun HAN 1,b, Yufeng PENG 1,c* and Jiangting LI 1,d 1 College of Physics and Electronic

More information

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode Electrophoretic Deposition - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode no redox differs from electrolytic in several ways deposit

More information

Comparison of Escherichia coli and Bacteriodes fragilis Transport within Saturated Quartz Sands

Comparison of Escherichia coli and Bacteriodes fragilis Transport within Saturated Quartz Sands Comparison of Escherichia coli and Bacteriodes fragilis Transport within Saturated Quartz Sands Jennifer J. Johanson, Lucia Feriancikova, Shangping Xu* Department of Geosciences University of Wisconsin

More information

Dispersion-Flocculation Behavior of Fine Lead Particles in an Organic Solvent

Dispersion-Flocculation Behavior of Fine Lead Particles in an Organic Solvent Materials Transactions, Vol. 49, No. 9 (2) pp. 2119 to 2123 #2 The Mining and Materials Processing Institute of Japan Dispersion-Flocculation Behavior of Fine Lead Particles in an Organic Solvent Masami

More information

Supplementary Information:

Supplementary Information: Supplementary Information: Self assembly of tetrahedral CdSe nanocrystals: effective patchiness via anisotropic steric interaction Michael A. Boles and Dmitri V. Talapin Department of Chemistry and James

More information

Fine Bubble Transport in Porous Media towards Application for Soil Remediation

Fine Bubble Transport in Porous Media towards Application for Soil Remediation Fine Bubble Transport in Porous Media towards Application for Soil Remediation HAMAMOTO Shoichiro Abstract Transport of fine bubbles (FBs) in porous media has drawn increasing ention, as a promising technology

More information

Stabilization of magnetorheological suspensions by polyacrylic acid polymers

Stabilization of magnetorheological suspensions by polyacrylic acid polymers Journal of Colloid and Interface Science 284 (2005) 527 541 www.elsevier.com/locate/jcis Stabilization of magnetorheological suspensions by polyacrylic acid polymers J.L. Viota, J. de Vicente, J.D.G. Durán,

More information

Methods for charge and size characterization colloidal systems

Methods for charge and size characterization colloidal systems Methods for charge and size characterization colloidal systems Content General Basics Stabino Measurement basics Applications NANO-flex Measurement basics Applications Nanoparticles Bulkphase of gold gold

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

AR-7781 (Physical Chemistry)

AR-7781 (Physical Chemistry) Model Answer: B.Sc-VI th Semester-CBT-602 AR-7781 (Physical Chemistry) One Mark Questions: 1. Write a nuclear reaction for following Bethe s notation? 35 Cl(n, p) 35 S Answer: 35 17Cl + 1 1H + 35 16S 2.

More information

13 Colloids and agglomeration

13 Colloids and agglomeration 13 Colloids and agglomeration The processing of fine particulate materials is becoming increasingly important and the term nanotechnology is typically used to describe any system with particle diameters

More information

OTTO-VON-GUERICKE UNIVERSITY, MAGDEBURG FACULTY OF PROCESS AND SYSTEMS ENGINEERING. Master Thesis

OTTO-VON-GUERICKE UNIVERSITY, MAGDEBURG FACULTY OF PROCESS AND SYSTEMS ENGINEERING. Master Thesis OTTO-VON-GUERICKE UNIVERSITY, MAGDEBURG FACULTY OF PROCESS AND SYSTEMS ENGINEERING Master Thesis Investigation of the Kinetics of Disintegration Processes during TiO2 Nanoparticles Synthesis A thesis submitted

More information

Stern-layer parameters of alumina suspensions

Stern-layer parameters of alumina suspensions Journal of Colloid and Interface Science 26 (2003) 400 407 www.elsevier.com/locate/jcis Stern-layer parameters of alumina suspensions E. Ruiz-Reina, A.I. Gómez-Merino, F.J. Rubio-Hernández, and P. García-Sánchez

More information

SOIL COLLOIDS PROPERTIES AND ION RINDING. CRC Press. University of Bueno Aires Buenos Aires, Argentina. Taylor & Francis Croup

SOIL COLLOIDS PROPERTIES AND ION RINDING. CRC Press. University of Bueno Aires Buenos Aires, Argentina. Taylor & Francis Croup SOIL COLLOIDS PROPERTIES AND ION RINDING Fernando V. Molina University of Bueno Aires Buenos Aires, Argentina CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the

More information

Supporting Information. 3 Shaw Environmental Inc., Cincinnati, OH

Supporting Information. 3 Shaw Environmental Inc., Cincinnati, OH SI-1 The Impact of Environmental Conditions (ph, Ionic Strength and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions Supporting Information Amro M. El Badawy

More information

MATERIALS AND METHODS

MATERIALS AND METHODS pubs.acs.org/est Hydrophobic Interactions Increase Attachment of Gum Arabic- and PVP-Coated Ag Nanoparticles to Hydrophobic Surfaces Jee Eun Song, Tanapon Phenrat,,# Stella Marinakos, Yao Xiao,^ Jie Liu,

More information

Chapter 2 Controlled Synthesis: Nucleation and Growth in Solution

Chapter 2 Controlled Synthesis: Nucleation and Growth in Solution Chapter 2 Controlled Synthesis: Nucleation and Growth in Solution Pedro H. C. Camargo, Thenner S. Rodrigues, Anderson G. M. da Silva and Jiale Wang Abstract The controlled synthesis of metallic nanomaterials

More information

NANO-RDX ELECTROSTATIC STABILIZATION MECHANISM INVESTIGATION USING DERJAGUIN-LANDAU AND VERWEY-OVERBEEK (DLVO) THEORY

NANO-RDX ELECTROSTATIC STABILIZATION MECHANISM INVESTIGATION USING DERJAGUIN-LANDAU AND VERWEY-OVERBEEK (DLVO) THEORY AD AD-E403 841 Technical Report ARMET-TR-16027 NANO-RDX ELECTROSTATIC STABILIZATION MECHANISM INVESTIGATION USING DERJAGUIN-LANDAU AND VERWEY-OVERBEEK (DLVO) THEORY Mouhcine Doukkali Rajen Patel Victor

More information

Factors governing the tendency of colloidal particles to flocculate

Factors governing the tendency of colloidal particles to flocculate Brownian flocculation of polymer colloids in the presence of a secondary minimum William R. Schowalter* and Alec B. Eidsath Department of Chemical Engineering, University of Illinois, Urbana, IL 61801

More information

Electrostatic potential distribution of a soft spherical particle with a charged. core and ph dependent charge density

Electrostatic potential distribution of a soft spherical particle with a charged. core and ph dependent charge density Electrostatic potential distribution of a soft spherical particle with a charged core and ph dependent charge density Kyle McDaniel, Fedra Valcius, Joseph Andrews, and Siddhartha Das* Department of Mechanical

More information

Ionic Strength and Composition Affect the Mobility of Surface-Modified Fe Nanoparticles in Water-Saturated Sand Columns

Ionic Strength and Composition Affect the Mobility of Surface-Modified Fe Nanoparticles in Water-Saturated Sand Columns Article Subscriber access provided by CARNEGIE MELLON UNIV Ionic Strength and Composition Affect the Mobility of 0 Surface-Modified Fe Nanoparticles in Water-Saturated Sand Columns Navid Saleh, Hye-Jin

More information

Complicated, short range. þq 1 Q 2 /4p3 0 r (Coulomb energy) Q 2 u 2 /6(4p3 0 ) 2 ktr 4. u 2 1 u2 2 =3ð4p3 0Þ 2 ktr 6 ðkeesom energyþ

Complicated, short range. þq 1 Q 2 /4p3 0 r (Coulomb energy) Q 2 u 2 /6(4p3 0 ) 2 ktr 4. u 2 1 u2 2 =3ð4p3 0Þ 2 ktr 6 ðkeesom energyþ Bonding ¼ Type of interaction Interaction energy w(r) Covalent, metallic Complicated, short range Charge charge þq 1 Q 2 /4p3 0 r (Coulomb energy) Charge dipole Qu cos q/4p3 0 r 2 Q 2 u 2 /6(4p3 0 ) 2

More information

Rheology of Dispersions

Rheology of Dispersions Rheology of Dispersions Outline BASF AG Hard particles Interactions among colloidal particles Repulsive particles Particle size distribution Shear thickening Attractive particles Prof. Dr. N. Willenbacher

More information

TECHNOLOGIES THAT TRANSFORM POLLUTANTS TO INNOCUOUS COMPONENTS: CHEMICAL AND PHYSICOCHEMICAL METHODS

TECHNOLOGIES THAT TRANSFORM POLLUTANTS TO INNOCUOUS COMPONENTS: CHEMICAL AND PHYSICOCHEMICAL METHODS TECHNOLOGIES THAT TRANSFORM POLLUTANTS TO INNOCUOUS COMPONENTS: CHEMICAL AND PHYSICOCHEMICAL METHODS HUANG Xia Tsinghua University, Beijing, P.R. China Keywords: Pollutants, Innocuous Components, Chemical

More information

A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin

A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin This journal is The Royal Society of Chemistry 11 Electronic Supplementary Information (ESI) A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin Xiujuan Xu, a Jing Huang,

More information

South pacific Journal of Technology and Science

South pacific Journal of Technology and Science Zetasizer Technique Dr. Nagham Mahmood Aljamali Abstract: Assist. Professor in Organic Chemistry, Chemistry Department.,College of Education.,Kufa University.,IRAQ. In this review study., zetasizer technique

More information

Kinetics of gold nanoparticle aggregation: Experiments and modeling

Kinetics of gold nanoparticle aggregation: Experiments and modeling Journal of Colloid and Interface Science 318 (2008) 238 243 wwwelseviercom/locate/jcis Kinetics of gold nanoparticle aggregation: Experiments and modeling Taehoon Kim a, Chang-Ha Lee a, Sang-Woo Joo b,,

More information

Steric stabilization i the role of polymers

Steric stabilization i the role of polymers Steric stabilization i the role of polymers Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting March 21 22, 2009 Salt Lake City Ian Morrison 2009 Ian Morrison 2009 Lecture 4

More information