Are mesoporous silicas resistant to radiation damage?

Similar documents
Surface properties and chemical constitution as. crucial parameters for the sorption properties of. ionosilicas: the case of chromate adsorption

In situ TEM studies of helium bubble/platelet evolution in Si based materials

Julien Schmitt, postdoc in the Physical Chemistry department. Internship 2010: Study of the SAXS scattering pattern of mesoporous materials

, MgAl 2. and MgO irradiated with high energy heavy ions O 3

Interaction of ion beams with matter

Supplemental Information: Ion-Specific Adsorption and Electroosmosis in Charged Amorphous Porous Silica

Report on Preparation of Nanotemplates for mab Crystallization

Au-Ti THIN FILMS DEPOSITED ON GaAs

PREPARATION OF MCM-48 MESOPOROUS MOLECULAR SIEVE INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURAL PROPERTIES

A systematic study of the influence of mesoscale structuring on the kinetics of a chemical reaction

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter.

Opportunities for Advanced Plasma and Materials Research in National Security

Fission Enhanced diffusion of uranium in zirconia

Swift heavy ion irradiation effects. in condensed matter. K. Havancsák

Ion Beam Induced Luminescence (IBIL) for scintillator analysis

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

Materials development for inorganic membrane layers at ECN

S1. X-ray photoelectron spectroscopy (XPS) survey spectrum of

sustainable nuclear energy

Radiation Damage Effects in Solids. Los Alamos National Laboratory. Materials Science & Technology Division

Swift heavy ion irradiation effect on the surface of sapphire single crystals

Serge Bouffard EMIR User days

WM2012 Conference, February 26 March 1, 2012, Phoenix, AZ

Radioresistance of adenine to cosmic rays

Ion Implantation ECE723

Performance of MAX phase Ti 3 SiC 2 under the irradiation of He/H :

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST

Supporting information. stereocomplex films. Kenta Kondo, Toshiyuki Kida, Yuji Ogawa, Yuuya Arikawa and Mitsuru Akashi*

AFM evidence of perpendicular orientation of cylindrical craters on hybrid silica thin film templated by triblock copolymer

Radioactivity - Radionuclides - Radiation

High voltage electron microscopy facility. Jannus-Saclay facility (GIS with Jannus-Orsay) SRMA

Formation of Nanostructured Layers for Passivation of High Power Silicon Devices

Radiation damage calculation in PHITS

SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam

Positron and positronium for the GBAR experiment

NEW TECHNIQUES DEDICATED TO THE CHARACTERIZATION OF INNOVATIVE FUELS

a b c Supplementary Figure S1

Transmissive Final Optic for Laser IFE

physics/ Sep 1997

Experience with Moving from Dpa to Changes in Materials Properties

Study of Graphene Growth Mechanism on Nickel Thin Films

Original Paper Fission Gas Bubbles Characterisation in Irradiated UO 2 Fuel by SEM, EPMA and SIMS

II.2 Photonic Crystals of Core-Shell Colloidal Particles

Oxydation sélective des composés organiques par H 2 O 2 catalysée par xerogels mésoporeux SiO 2 -TiO 2

Electronic Supplementary Information. Benjia Dou,, Vanessa L. Pool, Michael F. Toney *,, Maikel F.A.M. van Hest *,

arxiv: v1 [cond-mat.mtrl-sci] 5 Nov 2009

Investigation of Swift Heavy I-ion Irradiation Effects on Damage in Silicon Dioxide Thin Film

Electrochemically-assisted self-assembly of mesoporous silica thin films SUPPLEMENTARY INFORMATION A. WALCARIUS, E. SIBOTTIER, M. ETIENNE, J.

Joshua Whittam, 1 Andrew L. Hector, 1 * Christopher Kavanagh, 2 John R. Owen 1 and Gillian Reid 1

Progress Report on Chamber Dynamics and Clearing

Structural study of a rare earth-rich aluminoborosilicate glass containing various alkali and alkaline-earth modifier cations

Highly charged ion beams applied to fabrication of Nano-scale 3D structures. Sadao MOMOTA Kochi University of Technology

Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R&D: Application to Fukushima Waste Waters

New Sol-Gel Solution with 45 Days Stability for Preparation Silica Thin Films

Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2

Photonic crystals of core shell colloidal particles

Supports, Zeolites, Mesoporous Materials - Chapter 9

Chapter V: Cavity theories

Fabrication Technology, Part I

2. Which of the following statements help(s) to explain why gas can fill the vessel containing it completely while liquid cannot?

Chapter 2 Chemistry of High-Energy Charged Particles: Radiations and Polymers

CHAPTER 6. SOLVENT-FREE SELECTIVE OXIDATION OF -PINENE OVER Co-SBA-15 CATALYST

Soft X-ray multilayer mirrors by ion assisted sputter deposition

WELL-SIZED POROUS MATERIALS FOR SUPERCAPACITORS PREPARED BY A TEMPLATING PROCEDURE

Understanding of corrosion mechanisms after irradiation : effect of ion irradiation of the oxide layer on the corrosion rate of M5 alloy

Spontaneous Partitioning of the Ni+C 60 Thin Film Grown at RT

Synthesis of Mesoporous ZSM-5 Zeolite Crystals by Conventional Hydrothermal Treatment

FRIB Production Target. Frederique Pellemoine Visiting Associate Professor

The Radiation Assurance Test Facility at LNS-INFN in Catania. Behcet ALPAT INFN Sezione di Perugia

Superconducting Ti/TiN thin films for mm wave absorption

Change of Majority-Carrier Concentration in p-type Silicon by 10 MeV Proton Irradiation. Abstract

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter.

TOWARDS THE CREATION OF A EUROPEAN INSTITUTE OF HYDROMETALLURGY NOVEMBER 2012

Introduction. Neutron Effects NSEU. Neutron Testing Basics User Requirements Conclusions

Ion Implant Part 1. Saroj Kumar Patra, TFE4180 Semiconductor Manufacturing Technology. Norwegian University of Science and Technology ( NTNU )

Nanoporous Organosilica Membrane for Water Desalination

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages:

Chapter 4. Surface defects created by kev Xe ion irradiation on Ge

NITROGEN CONTAINING ULTRA THIN SiO 2 FILMS ON Si OBTAINED BY ION IMPLANTATION

Supporting Information. Nanoscale Kirkendall Growth of Silicalite-1 Zeolite Mesocrystals with. Controlled Mesoporosity and Size

Plasma modification of nanosphere lithography masks made of polystyrene beads

Radiation damage I. Steve Fitzgerald.

Available online at I-SEEC Proceeding - Science and Engineering (2013) 89 94

Supporting Information

Electrically active defects in semiconductors induced by radiation

High Temperature Water Clean and Etch Reactions with Low-k and SiO 2 Films: Experiments and Simulations

Magnetite decorated graphite nanoplatelets as cost effective CO 2 adsorbent

Titanium Evolution and Nickel Restoration Under Neutron Irradiation in Ni/Ti Multilayers

Whisker growth on Sn thin film accelerated under gamma-ray induced electric field

Tailoring of optical properties of LiNbO 3 by ion implantation

Tailoring Electrical Contact Resistivity at Metal-Thermoelectric Interfaces Using a Molecular Nanolayer

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

The role of PMI in MFE/IFE common research

NaTa0 3. /MCM-48 composites for photocatalytic conversion of organic molecules. Journal of Physics: Conference Series.

Direct Measurements of Irradiation-Induced Creep in Micropillars of Amorphous Cu 56 Ti 38 Ag 6, Zr 52 Ni 48, Si and SiO 2

-organic Thin Film From an Aqueous Solution

Synthesis of a Zeolite Column with a Monolithic Microhoneycomb Structure Using the Ice Template Method

Fabrication at the nanoscale for nanophotonics

Longer-Lasting Electron-Based Microscopy of Single Molecules in Aqueous Medium

Transcription:

INSTITUT DE CHIMIE SEPARATIVE DE MARCOULE Are mesoporous silicas resistant to radiation damage? X. Deschanels, Y. Lou, S. Dourdain, C. Rey Xavier.deschanels@cea.fr CEA, ICSM UMR 5257 CEA-CNRS-UM-ENSCM, 30207 Bagnols-sur-Cèze Cedex, France XXth Colloque Ganil 15-20 October 2O17

Marcoule Institute for Separation Chemistry Joint Research Unit (UMR 5257) between CEA, CNRS, Montpellier University, and Chemistry School of Montpellier ENSCM. Research teams Support teams Hybrid Materials for Separation (LHYS, D. Meyer) Ions at Interfaces (LIIA, O. Diat) Ion separation using supra-molecular selfassembled colloids(ltsm, S. Pellet-Rostaing) GEN IV Nuclear reactors Study of matter in Environmental Conditions (LM2E, R. Podor) Mesoscopic Modelling and Theoretical Chemistry (LMCT, J.-F. Dufrêche) Sonochemistry in Complex Fluids (LSFC, S. Nikitenko) Nanomaterials for Energy and Recycling processes (LNER, X. Deschanels) Fuel fabrication Back end of fuel cycle Evolving interfaces in materials (LIME, N. Dacheux) X-ray reflectivity and Grazing incidence X-ray diffraction And DTA/TGA, N2, Kr and H2O adsorption-desorption, GC-MS, X-ray fluorescence. Understand Separation Optimize separation Green chemistry Anticipate life-cycle Methods and theory 1

Context and goals Mesoporous materials : - 2 nm < d pore < 50 nm (IUPAC definition) - Mesoporous materials enable access to (strong) curvatures in solid state chemistry - Mesoporous materials are error tolerant and tend to reorganise spontaneously Radiation tolerance? - Interfaces act as sinks for irradiation induced point defects (Frenkel pairs) - Size of displacement cascade ~ Size of the mesoporosity Mesoporous silica - Size and organization of the mesoporosity can be easily tuned (elaboration by sol-gel process) - Many studies on radiation behavior of dense silica and several on Vycor glass (Klaumunzer) Mesoporous SiO 2 layer deposited on Si wafer P. Makowski, X. Deschanels, A. Grandjean, D. Meyer, G. Toquer, F. Goettmann, New. J. Chem. 36 (2012) 531 S. Klaumünzer, Nucl. Instr. Meth. Phys. Res. B 225 (2004) 136-153, 191 (2002) 356-361, 166-167 (2000) 459-464 2

Elaboration of the film Sol-Gel route Hydrolysis : Si-(OR 4 ) + x H 2 O (OH) x -Si-(OR) 4-x + x R-OH Condensation : (OR 3 )-Si-OH + HO-Si-(OR 3 ) (OR 3 )-Si-O-Si-(OR 3 ) + H 2 0 CTAB : CHBrN Spherical 3D Ø~ 2-3 nm Templating agent : P123: COH Cylindrical 2D Ø~ 4 nm F127: COH Spherical 3D Ø~ 4 nm Dip coating Obtained morphologies Dourdain, S.; Bardeau, J.-F.; Colas, M.; Smarsly, B.; Mehdi, A.; Ocko, B. M.; Gibaud, A., Appl. Phys. Lett. 2005, 86 (11), 113108 3

Objectives and Methodology Electronic process (Xe 92 MeV) SiO 2 Mesoporous silica Thin layer of Si/SiO 2 (e~80-100 nm) Mesoporous sol-gel silica Si wafer Ballistic process (Au 0.5 to 12 MeV) Analysis techniques: X-ray reflectivity, FTIR, SEM Objectives - Mesoporous structure evolution as well as silica network as a function of irradiation conditions - Influence of stopping power, dose, pore morphology - Understanding of damage mechanisms 4

Irradiation conditions Ion Sample de/dx Elec (kev/nm) de/dx Nucl (kev/nm) dpa at fluence 10 14 cm -2 JANNuS Saclay Irrsud Au 0,5MeV 2D cyl 4nm 3D sph 2nm 3D sph 4nm Non porous 0,85 3,1 0,33 Au 3MeV 2D cyl 4nm 1,8 2,1 0,18 Au 7MeV 2D cyl 4nm 2,4 1,5 0,099 Au 12MeV 2D cyl 4nm 2,7 1,1 0,081 Xe 92MeV 2D cyl 4nm 11 ~0 ~0 Annealing at 400 C for sol-gel samples aims to stabilize the SiO 2 structure 5

Réflectivité (a.u.) Au 0.5 MeV- XRR measurements Effect of fluence Reflectivité (u.a.) 2D Cyl 4 nm - 1 dpa ~ 3x10 14 ion/cm 2 1,0 0,8 0,6 0,4 0,2 Global film density increase 0,0 0,2 0,3 0,4 0,5 0,6 2theta ( ) Substrate t = T = 2π Q z,bragg 2π Q z,kiessig 0 Au/cm 2 0,5E14 Au/cm 2 1E14 Au/cm 2 1,5E14 Au/cm 2 3E14 Au/cm 2 4E14 Au/cm 2 7E14 Au/cm 2 Total film thickness decrease 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 2theta ( ) Amorphisation, compaction and deformation of pores (XRR measurments) Confirmation by SEM observations Porosity layer decrease and loss of organised structure 0 1 10 14 1,5 10 14 Au/cm 2 Au/cm 2 5 10 14 Au/cm 2 «Structure evolution of mesoporous silica under heavy ion irradiations of intermediate energies», Y. Lou, S. Dourdain, C. Rey, Y. Serruys, D. Siméone, N. Mollard, X. Deschanels Microporous mesoporous materials 251 (2017) 6

Reflectivity (a.u.) Reflectivity(u.a.) Reflectivity(u.a.) Reflectivity(u.a.) Reflectivity(u.a.) Reflectivity(u.a.) Au 0.5 MeV- XRR measurements Structure effects Global density (g/cm 3 ) 1,0 0,8 0,6 0,4 0,2 0,0 0,2 0,3 0,4 0,5 0,6 2theta ( ) 2D 4nm 3D 2nm 3D 4nm 2D cyl 4nm 0 Au/cm 2 0,5E14 Au/cm 2 1E14 Au/cm 2 1,5E14 Au/cm 2 3E14 Au/cm 2 4E14 Au/cm 2 7E14 Au/cm 2 2,4 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 2theta ( ) 3D 4nm 1,0 2,0 0,8 0,6 0,4 0,2 0,0 0,2 0,3 0,4 0,5 2theta 1,6 2D 4nm 3D 4nm 3D 2nm 3D sph 4nm 0 Au0,5MeV/cm 2 1E14 Au0,5MeV/cm 2 1,2 1 2 3 4 5 2theta 3D 2nm 5E14 Au0,5MeV/cm 2 2E15 Au0,5MeV/cm 2-1 0 1 2 3 4 5 6 7 19 20 21 22 23 Fluence (x10 14 Au/cm 2 ) 1,0 0,8 3D sph 2nm 0,6 0,4 0,2 0,2 0,3 0,4 0,5 2theta (? 0 Au0,5MeV/cm 2 1E14 Au0,5MeV/cm 2 5E14 Au0,5MeV/cm 2 Damage effect on the material: 2D 4nm > 3D 2nm > 3D 4 nm Cylindric > spheric Small pores > large pores 2E15 Au0,5MeV/cm 2 1 2 3 4 5 6 2theta (? 7

Reflectivity(u.a.) Au irr. - XRR measurements Stopping power 2D cyl 4nm 10 3 10 2 10 1 10 0 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 1E14 ion/cm 2 1 2 3 4 5 6 2theta 0 Au 0,5MeV Au 3MeV Au 7MeV Au 12MeV Au 0,5-3-7-12 MeV Ion energy ballistic effect & electronic effect Damage effect Au 12MeV > Au 0.5 MeV > Au 7 MeV > Au 3 MeV Damage less important when electronic and ballistic effects are mixed 8

Thickness decrease (%) Au Irr. XRR measurments Stopping power "Cross-section diameter" (nm) 60 2D cyl 4nm 0,6 ρ ρ 0 = ρ ρ 0 sat (1 exp( σф)) 50 40 30 20 10 0 Au 0,5MeV Au 3MeV Au 7MeV Au 12MeV Marples fit Au 0,5MeV Marples fit Au 3MeV Marples fit Au 7MeV Marples fit Au 12MeV 0,5 0,4 0 2 4 6 20 21 Fluence (x10 14 Au/cm 2 ) 0,3 0,1 1 10 Au energy (MeV) Quantitative confirmation U shape form for the plot of Cross section versus Energy - Au 12MeV > Au 0.5 MeV > Au 7 MeV > Au 3 MeV - Antagonism effect between electronic and ballistic stopping power Marples, J. A. C., Dose rate effects in radiation damage to vitrified radioactive waste. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1988, 32 (1), 480-486. 9

Réflectivité (a.u.) Réflectivité(a.u.) Electronic effects 2D Ø~4nm 2D F~4nm, 129 Xe, 92MeV, 11 kev/nm 10 1 0,1 1,0 0,8 0,6 de/dx> track formation in dense SiO 2 100nm virgin 0,01 0,4 1E-3 1E-4 1E-5 1E-6 0,2 0,38 0,40 0,42 0,44 0,46 0,48 0,50 2theta ( ) SiO 2 Si 1E-7 1E-8 1E-9 1E-10 0 5E12 Xe/cm2 1E13 Xe/cm2 3E13 Xe/cm2 6E13 Xe/cm2 1 2 3 4 5 6 100nm Irradiated 1x10 13 cm -2 2theta ( ) Collapse of the mesoporous structure for high fluence Observation of track by SEM SiO 2 Si Dourdain, S.; Deschanels, X.; Toquer, G.; Grygiel, C.; Monnet, I.; Pellet-Rostaing, S.; Grandjean, A., Radiation damage of mesoporous silica thin films monitored by X-ray reflectivity and scanning electron microscopy. JNM 2012, 427 (1 3), 411-414 11

Ballistic effects - Modelling Modelling Structure similar to thin layer 2D cyl-hex 4 nm Box creation: MonteCarlo Irradiation simulation : Molecular dynamics (Ballistic effects only) Mesostructure evolution (up to 1,2 dpa) Mesopore collapse and deformation of the mesoporous structure Box shrinkage 12

Number of surface atoms Ballistic effects - Modelling Surface atoms (Voronoï) Number of surface atoms 2500 2400 2300 2200 2100 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 Dose (dpa) At first, up to 0.4 dpa, increase of the nb. of surface atoms, ie rugosity and pore formation in the wall of the silica network For higher damage, decrese in the nb. of surface atoms, ie collapse of the mesoporous structure 13

Compaction (%) Conclusions Ballistic, Au irr. 60 50 40 30 20 10 0 Au 0,5MeV sur couche mince Au 12MeV sur couche mince 58Ni 638MeV sur SBA-15 20Ne 278MeV sur SBA-15 Xe 92MeV sur couche mince de/dx>5kev/nm, track de/dx<1kev/nm 0,01 0,1 1 10 100 Electronic dose (10 21 kev/cm 3 ) - Compaction is dependant on the stopping power of the ions - Ballistic effects lead to higher damage than electronic ones - The size of the mesopore is a crucial parameter In some extent mesoporous materials present tolerance to radiation damage 1314

Separation conditioning process Nuclear waste management Adsorption of the selected radionuclide Encapsulation of the radionuclide by subsequent collapse of the structure (Thermal stress, chemical stress ) SiO 2 Functionalized Selective separation Conditioning Field of application Outflows coming from dismantling sites Pore collapse (Thermo-mechanical or radiation stress) 15

Institut de Chimie Séparative de Marcoule UMR 5257 CEA CNRS UM ENSCM Site de Marcoule Bâtiment 426 BP 17171 F-30207 Bagnols-sur-Cèze Cedex T. +33 (0)4 66 79 60 87 F. +33 (0)4 66 79 76 11 http://www.icsm.fr Thank you for your attention Thanks to C. Grygiel, I. Monnet, F. Durantel at GANIL facility Thanks to Y.Serruys and all the staff of JANNUS-Saclay Thanks to B.Siboulet and J-M.Delaye for modelling study Thanks to EMIR network for irradiation and to the GDR Needs «Déchets» for funding