Professor: Mihnea UDREA DIGITAL SIGNAL PROCESSING. Grading: Web: MOODLE. 1. Introduction. General information

Similar documents
State space systems analysis

Digital Signal Processing, Fall 2010

EECE 301 Signals & Systems Prof. Mark Fowler

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

Ch3 Discrete Time Fourier Transform

DIGITAL SIGNAL PROCESSING LECTURE 3

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed)

ECEN620: Network Theory Broadband Circuit Design Fall 2014

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Spring 2014, EE123 Digital Signal Processing

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi)

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors.

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s

ADVANCED DIGITAL SIGNAL PROCESSING

Finite-length Discrete Transforms. Chapter 5, Sections

Chapter 7 z-transform

ELEG3503 Introduction to Digital Signal Processing

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1

M2.The Z-Transform and its Properties

Exponential Moving Average Pieter P

Lecture 30: Frequency Response of Second-Order Systems

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

Solution of EECS 315 Final Examination F09

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement

Frequency Response of FIR Filters

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

EE Midterm Test 1 - Solutions

Review of Discrete-time Signals. ELEC 635 Prof. Siripong Potisuk

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems

FIR Filter Design: Part II

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals.

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5

Introduction to Digital Signal Processing

Signals & Systems Chapter3

Linear time invariant systems

UNIT-I. 2. A real valued sequence x(n) is anti symmetric if a) X(n)=x(-n) b) X(n)=-x(-n) c) A) and b) d) None Ans: b)

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal.

Last time: Ground rules for filtering and control system design

Chapter 2 Systems and Signals

Introduction to Signals and Systems, Part V: Lecture Summary

Discrete-Time Signals and Systems. Signals and Systems. Digital Signals. Discrete-Time Signals. Operations on Sequences: Basic Operations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

Frequency Domain Filtering

Question1 Multiple choices (circle the most appropriate one):

In Lecture 25, the noisy edge data was modeled as a series of connected straight lines plus iid N(0,

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

The Performance of Feedback Control Systems

} is said to be a Cauchy sequence provided the following condition is true.

ECE4270 Fundamentals of DSP. Lecture 2 Discrete-Time Signals and Systems & Difference Equations. Overview of Lecture 2. More Discrete-Time Systems

1it is said to be overdamped. When 1, the roots of

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

COMM 602: Digital Signal Processing

Introduction to Control Systems

T Signal Processing Systems Exercise material for autumn Solutions start from Page 16.

EE123 Digital Signal Processing

STA 4032 Final Exam Formula Sheet

Last time: Completed solution to the optimum linear filter in real-time operation

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

Automatic Control Systems

Expectation and Variance of a random variable

PRELIM PROBLEM SOLUTIONS

ELEC 372 LECTURE NOTES, WEEK 1 Dr. Amir G. Aghdam Concordia University

Introduction to Wavelets and Their Applications

Brief Review of Linear System Theory

Unit 6: Sequences and Series

Lecture 2 Linear and Time Invariant Systems

Isolated Word Recogniser

Module 18 Discrete Time Signals and Z-Transforms Objective: Introduction : Description: Discrete Time Signal representation

6.003 Homework #12 Solutions

Chapter 7: The z-transform. Chih-Wei Liu

2D DSP Basics: Systems Stability, 2D Sampling

SEQUENCE AND SERIES NCERT

UNIT #8 QUADRATIC FUNCTIONS AND THEIR ALGEBRA REVIEW QUESTIONS

FIR Filter Design by Windowing

Signal Processing in Mechatronics

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

Generalized Likelihood Functions and Random Measures

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0.

6.003 Homework #12 Solutions

UNIT #8 QUADRATIC FUNCTIONS AND THEIR ALGEBRA REVIEW QUESTIONS

Unit 4: Polynomial and Rational Functions

The z Transform. The Discrete LTI System Response to a Complex Exponential

Time-Domain Representations of LTI Systems

A. Basics of Discrete Fourier Transform

The Discrete Fourier Transform

Mathematical Statistics - MS

Solutions - Homework # 1

EE 485 Introduction to Photonics Photon Optics and Photon Statistics

Warped, Chirp Z-Transform: Radar Signal Processing

2D DSP Basics: 2D Systems

The Noval Properties and Construction of Multi-scale Matrix-valued Bivariate Wavelet wraps

EE422G Homework #13 (12 points)

System Control. Lesson #19a. BME 333 Biomedical Signals and Systems - J.Schesser

Transcription:

Geeral iformatio DIGITL SIGL PROCESSIG Profeor: ihea UDRE B29 mihea@comm.pub.ro Gradig: Laboratory: 5% Proect: 5% Tet: 2% ial exam : 5% Coure quiz: ±% Web: www.electroica.pub.ro OODLE 2 alog igal proceig ytem. Itroductio Dicrete Time Sigal ad Sytem 3 4

Digital igal proceig ytem 5 - -. Dicrete-Time Sigal x () a t T 2T T x( ) 2 3 4 5 t a x T x t t T periodically amplig a cotiou time igal at time iterval T. x x T a T amplig period T amplig frequecy S 6 Baic igal The dicrete impule,, The dicrete uit tep u,, Periodical igal -4-3 -2-2 3 4 ( ) u ( ) -4-3 -2-2 3 4 dicrete igal i ample periodical if: Z x x Z 7 The dicrete-time iuoid a t - i x t t T 2 i x x T a S - 2 3 4 5 f ormalied frequecy f t TS 2 S T S agular ormalied frequecy T 2 f S S 8

The dicrete-time iuoid x() i ample periodical if there exit iteger ad : 2 2 The dicrete-time iuoid x() i ample periodical if there exit iteger ad : 2 2 = Hz; S = Hz 2.2 S i.2 x.5 3 =.5 Hz; S = Hz 2 2 2 i.3 x 2 3 4 5 2 3 4 2 - =, = 9 - =2, =3 The dicrete-time igal eergy requecy aalyi of dicrete-time igal def 2 E x x(t) x T x t t T x t t T E T S E a 2 E T x T a S a S The average power T 2T 3T T d(t) d(t - T ) P lim 2 2 x t T t 2

requecy aalyi of dicrete-time igal 2 xt x t t T Deote: xt X xt X a x T x t t T X X X 2 T a a 2 2 T 3 X X T a -2Ω -2Ω -Ω Ω /T Coditio: ) X a (Ω) =, for Ω >Ω 2) Ω 2Ω Samplig Theorem (yquit) X a (Ω) X(Ω) -Ω /2 Ω /2 -Ω Ω Ω 2Ω /T aliaig -Ω -Ω Ω Ω 2Ω 4 Ω Ω The miimum amplig rate i achieved for Ω =2Ω =2 = yquit rate (yquit frequecy) X() X(f) -2 - - 2-2 2f 2 - -.5.5 2 ( ) X() f f - ormalized frequecy X(f) -2 - -.5.5 2 5 f -4π -2π -π 2π π 2π 4π (Ω ) [ ; ), f [.5;.5) (baic iterval) 6

requecy aalyi of dicrete-time igal requecy aalyi of dicrete-time igal Z traform: X z Z x x z 2 x Z X z X z z dz D z z R, R R R ot importat propertie: C Im{z} Re{z} R - R + Z traform: a) igal with left limited upport, upp x, particular cae: x X z Z x x z D z z R Im{z} R - Re{z} x X z x z X z 2 2 7 8 x x X z X z requecy aalyi of dicrete-time igal requecy aalyi of dicrete-time igal Z traform: b) igal with right limited upport, upp x, x X z Z x x z D z z R Im{z} Re{z} R + Z traform: bilateral equece ca be decompoed: x x ( ), ele D z z R x x x x x ( ), ele D z z R D D D z R z R 9 2

requecy aalyi of dicrete-time igal Z traform: Let: ad: The: ad: X z ' x x Z x ' X ' z Z x X z D' z z R R D z R z R X ' z x z x z X z z R z R z R z R 2 requecy aalyi of dicrete-time igal Dicrete time ourier traform (DTT): Xe xe DTTx 2f 2 x Xe e d IDTTXe 2 Dicrete ourier traform (DT): x up, X DT x x W xidtx XW W 2 e 2 22 requecy aalyi of dicrete-time igal requecy aalyi of dicrete-time igal Z traform X z x z Dicrete time ourier traform (DTT): Xe DTT DT z e X e x e Xz Xe X x e 2 2 X 23-3π -2π -π π 2π 3π Dicrete ourier traform (DT): X 2,,, 2-2 X e X 24

Example: The rectagular widow The rectagular widow frequecy characteritic I defied by: w ( ) D -2-2... - +,, wd ( ), i ret z WD ( z) z z WD e The pectrum i: e WD ( e ) e e i 2 2 i 2 WD ( ) 2 2 2 2 25 26 requecy aalyi of dicrete-time igal i ( ) x u u requecy aalyi of dicrete-time igal i ( ) x u u DTT X e -π - π 2π- 2π 2π+ D X e W e -π - π 2π- 2π 2π+ WD e 2 π 2π Widowig effect 27 DTT 2 DT X e X W D e X 2 3 4 5 6 7 8 9 2 π 2π- 2π 2 2 4 2 π 2π 28

requecy aalyi of dicrete-time igal i ( ) x u u.2 Dicrete-time Sytem y T x x() T { } y() DTT 2 DT X e X X 2 3 4 5 6 7 8 9 2 π 2π- 2π 2 4.8 WD e 2 2 π 2π Spectral leaage Liear ytem atify the uperpoitio priciple: T a x a x at x a T x a y a y 2 2 2 2 2 2 The impule repoe: h T x x Tx T x xt xh y 29 3 T h Dicrete-time ytem Time ivariat ytem have the followig property: T x y T x y Z y xh h T h Dicrete time liear covolutio: x x x x x x 2 2 2 x() h() y hx xh Dicrete-time ytem Cauzal ytem. xa xb petru ya yb petru LTI cauzal ytem: h, Stable ytem the impule repoe ha to be abolutely umable. h 3 32

LTIS differece equatio: y x If deote: a b y b x a y IR fiite impule repoe ytem ( = ): y b x h b x a IIR ifiite impule repoe ( > ). b, [, ], i ret 33 LTIS trafer fuctio x() y() h() impule repoe X(z) Y(z) H(z) ytem fuctio y x h X zhz Y z Similar aalyi with ourier traform: z e H z H e Z h Y e X e H e 34 LTIS trafer fuctio ume a LTIS havig the differece equatio: y b x a y pplyig the Z traform: Y z b X z z a Y z z bz Y z B( z) X( z) ( ) z az Z x ( ) X z z Z y ( ) Y z z 35 LTIS trafer fuctio Bz ( ) b b z... b z z ( ) az... a z z the ytem zero: p the ytem pole: the ytem order (umber of pole).... Bz ( ) b z z z z z z z ( ) pz pz... p z H p Stable ytem the pole mut be le tha (i abolute value). p 36

LTIS trafer fuctio IIR ytem: IR ytem: a b z b bz... b z h ( ) b ( ) Bz ( ) z ( ) bz az bz Z b ( ) Example: The movig average filter The mea of a legth igal: m What if igal legth i ifiite? Ue frame (widow) of lat ample m x( ) x( +) x( +2) x( +3) - - - x() x(+) x(+2) - - - x( ) h() =6 h ( ) b - 2 3 4 5 6 7 h( ) z 37 m m m 2 38 The movig average filter.8.6 Deoiig a igal: m ( ) x ( ) =4.8.6.4.2 -.2 -.4 oiy igal =2 -.6.8 origial igal origial igal deoied igal -.8 deoied igal.6 5 5 2 25 3 35 4 The movig average filter The i a IR filter of legth the impule repoe: h( ) ( ) h () =8.4.2.4.2 / -.2 -.4 -.2 -.4 2 3 4 5 6 7 8 -.6 -.6 -.8 -.8 5 5 2 25 3 35 4 5 5 2 25 3 35 4 39 4

The movig average filter The movig average filter The i a IR filter of legth the impule repoe: h ( ) ( ) /,,, i ret H e h( ) wd ( ) h () =8 / 2 3 4 5 6 7 8 H ( z) z z z 4 2 2 2 2 42 The movig average filter The movig average filter The movig average filter output y ( ) x ( ) x ( )... x ( ) x ( ) x ( )... x ( ) y ( ) x ( ) y( ) y( ) x( ) x( ) The recurive equatio y( ) y( ) x( ) x( ) Correpod to Z traform Y( z) z X( z) z Y( z) z H( z) X ( z) z 43 44

LTIS aalyi i the frequecy domai The ytem trafer fuctio: H e h e arg H e H e e H e e Sytem havig a real h(): H e H e H e LTIS aalyi i the frequecy domai x() y() h() co x e e e e 2 2 y He e e 2 ( ) y e He e e 2 e H e e e 2 y He co ( ) 45 46 LTIS aalyi i the frequecy domai x() y() h() y He co H e i the filter gai ad repreet the magitude frequecy characteritic; i the phae delay of the ytem ad repreet the phae frequecy characteritic; d The time group delay: d 47