Preface to the Second Edition. Preface to the First Edition

Similar documents
Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal. nomenclature

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Radiation in the atmosphere

Lecture 3: Atmospheric Radiative Transfer and Climate

Electromagnetic Radiation. Physical Principles of Remote Sensing

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Earth: the Goldilocks Planet

Lecture Notes Prepared by Mike Foster Spring 2007

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

What is it good for? RT is a key part of remote sensing and climate modeling.

Introduction to Electromagnetic Radiation and Radiative Transfer

ATMOS 5140 Lecture 7 Chapter 6

Lecture 5: Greenhouse Effect

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Fundamentals of Atmospheric Radiation and its Parameterization

APPLICATIONS WITH METEOROLOGICAL SATELLITES. W. Paul Menzel. Office of Research and Applications NOAA/NESDIS University of Wisconsin Madison, WI

UNIT I EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH MATERIAL

Lecture 5: Greenhouse Effect

Lecture 2: principles of electromagnetic radiation

Questions you should be able to answer after reading the material

ASTR-1010: Astronomy I Course Notes Section IV

1. The most important aspects of the quantum theory.

Radiation and the atmosphere

aka Light Properties of Light are simultaneously

Lecture 2 Global and Zonal-mean Energy Balance

Radiative Equilibrium Models. Solar radiation reflected by the earth back to space. Solar radiation absorbed by the earth

M.Sc. in Meteorology. Physical Meteorology Prof Peter Lynch. Mathematical Computation Laboratory Dept. of Maths. Physics, UCD, Belfield.

The mathematics of scattering and absorption and emission

Monday 9 September, :30-11:30 Class#03

The Radiative Transfer Equation

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

Radiative Transfer Multiple scattering: two stream approach 2

Lecture 4: Radiation Transfer

Solar radiation / radiative transfer

Atmospheric Radiation

2. Energy Balance. 1. All substances radiate unless their temperature is at absolute zero (0 K). Gases radiate at specific frequencies, while solids

1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions

ATMOSPHERIC RADIATIVE TRANSFER Fall 2009 EAS 8803

THREE MAIN LIGHT MATTER INTERRACTION

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

Dr. Linlin Ge The University of New South Wales

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

1. Weather and climate.

Chapter 1: Introduction

Solar Radiation and Environmental Biophysics Geo 827, MSU Jiquan Chen Oct. 6, 2015

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group

Physical Basics of Remote-Sensing with Satellites

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

Electromagnetic Waves

The Spectral Radiative Effects of Inhomogeneous Clouds and Aerosols

Description of radiation field

ASTRONOMY 103: THE EVOLVING UNIVERSE. Lecture 4 COSMIC CHEMISTRY Substitute Lecturer: Paul Sell

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

Lecture 4: Heat, and Radiation

The Light of Your Life. We can see the universe because atoms emit photons

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Microwave Remote Sensing of Sea Ice

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University

Absorption and scattering

Observing Habitable Environments Light & Radiation

Earth Systems Science Chapter 3

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2

An Introduction to Atmospheric Physics

Physics and Chemistry of the Interstellar Medium

INTRODUCTION TO MICROWAVE REMOTE SENSING. Dr. A. Bhattacharya

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

The Planck Blackbody Equation and Atmospheric Radiative Transfer

Lecture 2: Global Energy Cycle

Inaugural University of Michigan Science Olympiad Tournament

Tananyag fejlesztés idegen nyelven

Molecular spectroscopy

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work

Understanding the Greenhouse Effect

Temperature Scales

Solar radiation - the major source of energy for almost all environmental flows

WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA

Modeling of Environmental Systems

Electro-Optical System. Analysis and Design. A Radiometry Perspective. Cornelius J. Willers SPIE PRESS. Bellingham, Washington USA

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

9/12/2011. Training Course Remote Sensing - Basic Theory & Image Processing Methods September 2011

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Topics: Visible & Infrared Measurement Principal Radiation and the Planck Function Infrared Radiative Transfer Equation

2 The Radiative Transfer Equation

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance

ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005

What is Remote Sensing (RS)?

TOPIC # 6 The RADIATION LAWS

Let s make a simple climate model for Earth.

Radiation in climate models.

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields

4.2 Properties of Visible Light Date: (pages )

In the News:

SPECTROSCOPY Basic concepts part 1

11/18/2010. Only part of the spectrum we can see. A rainbow of colors, each corresponding to a different wavelength.

Lecture 4: Global Energy Balance

Lecture 3: Global Energy Cycle

Transcription:

Contents Preface to the Second Edition Preface to the First Edition iii v 1 Introduction 1 1.1 Relevance for Climate and Weather........... 1 1.1.1 Solar Radiation.................. 2 1.1.2 Thermal Infrared Radiation........... 3 1.1.3 The Global Heat Engine............. 4 1.1.4 Components of the Earth s Energy Budget.. 6 1.2 Relevance for Remote Sensing.............. 7 2 Properties of Radiation 11 2.1 The Nature of Electromagnetic Radiation....... 11 2.2 Frequency......................... 16 2.2.1 Frequency Decomposition............ 18 2.2.2 Broadband vs Monochromatic Radiation... 19 2.3 Polarization........................ 20 2.4 Energy........................... 22 2.5 A Mathematical Description of EM Waves...... 24 2.6 Quantum Properties of Radiation............ 31 2.7 Flux and Intensity..................... 33 2.7.1 Flux......................... 33 vii

viii 2.7.2 Intensity...................... 35 2.7.3 Relationship between Flux and Intensity... 46 2.8 Applications........................ 49 2.8.1 Global Insolation................. 49 2.8.2 Regional and Seasonal Distribution of Insolation 50 3 The Electromagnetic Spectrum 55 3.1 Frequency, Wavelength and Wavenumber....... 56 3.2 Major Spectral Bands................... 57 3.2.1 Gamma Rays and X-Rays............ 61 3.2.2 Ultraviolet Band................. 61 3.2.3 Visible Band.................... 63 3.2.4 Infrared Band................... 64 3.2.5 Microwave and Radio Bands.......... 66 3.3 Solar and Terrestrial Radiation............. 68 3.4 Applications........................ 69 3.4.1 UV Radiation and Ozone............ 69 4 Reflection andrefraction 74 4.1 A Closer Look at N... 76 4.1.1 The Real Part................... 76 4.1.2 The Imaginary Part................ 76 4.1.3 The Dielectric Constant... 79 4.1.4 Optical Properties of Heterogeneous Mixtures 80 4.2 Refraction and Reflection................. 82 4.2.1 Angle of Reflection................ 82 4.2.2 Angle of Refraction................ 84 4.2.3 Reflectivity.................... 86 4.3 Applications........................ 90 4.3.1 Rainbows and Halos............... 90 5 Radiative Properties ofnaturalsurfaces 96 5.1 Natural Surfaces Idealized as Planar Boundaries... 97 5.2 Absorptivity and Reflectivity.............. 98 5.2.1 Examples of Reflectivity Spectra........ 99 5.2.2 The Graybody Approximation......... 100 5.3 Angular Distribution of Reflected Radiation...... 102 5.3.1 Specular and Lambertian Reflection...... 102 5.3.2 Reflection in the General Case......... 105

ix 5.4 Applications........................ 107 5.4.1 Solar Heating of Surfaces............ 107 5.4.2 Satellite Imaging at Visible and Near-IR Wavelengths.................... 109 6 Thermal Emission 113 6.1 Blackbody Radiation................... 115 6.1.1 Planck s Function................. 117 6.1.2 Wien s Displacement Law............ 120 6.1.3 Stefan-Boltzmann Law.............. 122 6.1.4 Rayleigh-Jeans Approximation......... 123 6.2 Emissivity......................... 123 6.2.1 Monochromatic Emissivity........... 124 6.2.2 Graybody Emissivity............... 124 6.2.3 Kirchhoff s Law.................. 125 6.2.4 Brightness Temperature............. 127 6.3 When Does Thermal Emission Matter?......... 130 6.4 Applications........................ 132 6.4.1 Radiative Equilibrium in a Vacuum...... 133 6.4.2 Top-of-the-Atmosphere Global Radiation Balance........................ 136 6.4.3 Simple Radiative Models of the Atmosphere. 139 6.4.4 Nighttime Radiative Cooling.......... 144 6.4.5 Radiative Cooling at Cloud Top........ 146 6.4.6 IR Imaging from Space.............. 148 6.4.7 Microwave Imaging from Space........ 151 7 Atmospheric Transmission 155 7.1 Extinction, Scattering and Absorption Coefficients.. 159 7.2 Extinction Over a Finite Path.............. 160 7.2.1 Fundamental Relationships........... 160 7.2.2 Mass Extinction Coefficient........... 163 7.2.3 Extinction Cross-Section............. 166 7.2.4 Generalization to Scattering and Absorption. 167 7.2.5 Generalization to Arbitrary Mixtures of Components...................... 168 7.3 Plane Parallel Approximation.............. 169 7.3.1 Definition..................... 171 7.3.2 Optical Depth as Vertical Coordinate...... 173

x 7.4 Applications........................ 174 7.4.1 The Transmission Spectrum of the Atmosphere 174 7.4.2 Measuring Solar Intensity from the Ground.. 185 7.4.3 Transmittance in an Exponential Atmosphere 187 7.4.4 Optical Thickness and Transmittance of a Cloud Layer.................... 194 8 Atmospheric Emission 204 8.1 Schwarzschild s Equation................ 205 8.2 Radiative Transfer in a Plane Parallel Atmosphere.. 210 8.2.1 The Emissivity of the Atmosphere....... 211 8.2.2 Monochromatic Flux... 212 8.2.3 Surface Contributions to Upward Intensity.. 215 8.3 Applications........................ 217 8.3.1 The Spectrum of Atmospheric Emission.... 219 8.3.2 Satellite Retrieval of Temperature Profiles... 228 8.3.3 Water Vapor Imagery............... 233 9 Absorption by Atmospheric Gases 236 9.1 Basis for Molecular Absorption/Emission....... 238 9.2 Absorption/Emission Lines............... 240 9.2.1 Rotational Transitions.............. 243 9.2.2 Vibrational Transitions.............. 251 9.2.3 Electronic Transitions.............. 256 9.2.4 Combined Energy Transitions and Associated Spectra....................... 258 9.3 Line Shapes........................ 258 9.3.1 Generic Description of Lines.......... 260 9.3.2 Doppler Broadening............... 261 9.3.3 Pressure Broadening............... 263 9.3.4 Comparing Doppler and Pressure Broadening 266 9.4 Continuum Absorption.................. 267 9.4.1 Photoionization.................. 268 9.4.2 Photodissociation................. 268 9.4.3 Continuum Absorption by Water Vapor.... 269 9.5 Applications........................ 270 9.5.1 Atmospheric Absorbers in the IR Band.... 270

xi 10 Broadband Fluxes and Heating Rates 280 10.1 Line-by-line Calculations................. 281 10.2 Band Transmission Models............... 286 10.2.1 Absorption by an Isolated Line......... 288 10.2.2 Defining a Band Model............. 293 10.2.3 The Elsasser Band Model............ 294 10.2.4 The Random/Malkmus Band Model...... 297 10.2.5 The HCG Approximation............ 298 10.3 The k-distribution Method................ 299 10.3.1 Homogeneous Path................ 300 10.3.2 Inhomogeneous Path: Correlated-k... 303 10.4 Applications........................ 306 10.4.1 Fluxes and Radiative Heating/Cooling.... 306 11 RTE With Scattering 320 11.1 When Does Scattering Matter?............. 321 11.2 Radiative Transfer Equation with Scattering...... 322 11.2.1 Differential Form................. 322 11.2.2 Polarized Scattering... 324 11.2.3 Plane Parallel Atmosphere........... 324 11.3 The Scattering Phase Function.............. 326 11.3.1 Isotropic Scattering................ 327 11.3.2 The Asymmetry Parameter........... 329 11.3.3 The Henyey-Greenstein Phase Function.... 330 11.4 Single vs. Multiple Scattering.............. 332 11.5 Applications........................ 336 11.5.1 Intensity of Skylight............... 336 11.5.2 Horizontal Visibility............... 338 12 Scattering and Absorption By Particles 343 12.1 Atmospheric Particles.................. 344 12.1.1 Overview..................... 344 12.1.2 Relevant Properties................ 345 12.2 Scattering by Small Particles............... 347 12.2.1 Dipole Radiation................. 347 12.2.2 The Rayleigh Phase Function.......... 351 12.2.3 Polarization.................... 353 12.2.4 Scattering and Absorption Efficiencies..... 354 12.3 Scattering by Spheres Mie Theory.......... 358

xii 12.3.1 Extinction Efficiency for Nonabsorbing Sphere 359 12.3.2 Extinction and Scattering by Absorbing Spheres363 12.3.3 Scattering Phase Function............ 365 12.4 Distributions of Particles................. 372 12.5 Applications........................ 373 12.5.1 The Scattering Properties of Clouds...... 373 12.5.2 Radar Observations of Precipitation...... 376 12.5.3 Microwave Remote Sensing and Clouds.... 382 13 Radiative Transfer with Multiple Scattering 387 13.1 Visualizing Multiple Scattering............. 389 13.2 The Two-Stream Method................. 392 13.2.1 Azimuthally Averaged RTE........... 392 13.2.2 The Two-Stream Approximation........ 393 13.2.3 Solution...................... 398 13.3 Semi-Infinite Cloud.................... 400 13.3.1 Albedo....................... 401 13.3.2 Flux and Heating Rate Profile.......... 404 13.4 Nonabsorbing Cloud................... 406 13.5 General Case........................ 408 13.5.1 Albedo, Transmittance, and Absorptance... 409 13.5.2 Direct and Diffuse Transmittance........ 412 13.5.3 Semi-Infinite Cloud as Approximation..... 414 13.6 Similarity Transformations... 416 13.7 Clouds Over Non-Black Surfaces............ 418 13.8 Multiple Cloud Layers.................. 423 13.9 Accurate solution methods... 424 A Representing the Phase Function 427 A.1 Legendre Polynomial Expansion............ 427 A.2 δ-scaling of the Phase Function............. 430 B Symbols Used 438 C Further Reading 445 D Useful Physical andastronomical Constants 447 Ordering Information 459