Modeling Electric Field and Potential Distribution of an Model of Insulator in Two Dimensions by the Finite Element Method

Similar documents
SIMULATION OF THE POTENTIAL AND ELECTRIC FIELD DISTRIBUTION ON HIGH VOLTAGE INSULATOR USING THE FINITE ELEMENT METHOD

BP 145 RP, Biskra, Algeria

Simulation of the Electric Field on Composite Insulators Using the Finite Elements Method

3D modeling of Electrical Field and Electrical Potential in different contamination condition in Polymeric Insulator

Electric Field and Potential Distributions along Dry and Clean Non-Ceramic Insulators. Integrated Engineering Software - Website Links

Measurement and simulation of the voltage distribution and the electric field on a glass insulator string

Finite Element Analysis of Disc Insulator Type and Corona Ring Effect on Electric Field Distribution over 230-kV Insulator Strings

Modeling Electric Fields in High Voltage Submersible Changeover Switch

ELECTRIC FIELD AND VOLTAGE DISTRIBUTION ALONG INSULATORS UNDER POLLUTION CONDITIONS. V T Kontargyri N C Ilia I F Gonos I A Stathopulos

SCIENCE & TECHNOLOGY

3D-model of an AC/DC Hybrid EHV Transmission Line to Analyze the Electrical Potential along Insulators

CHAPTER 5 ANALYSIS OF ELECTRIC FIELD AND VOLTAGE DISTRIBUTION

Analysis and Prediction of Electric Field Intensity and Potential Distribution along Insulator Strings by using 3D models

EFFECT OF EARTH DISCONTINUED TO THE ELECTRICAL FIELD DISTRIBUTION IN ROD-PLANE AIR GAPS UNDER LIGHTNING IMPULSE. A. Khechekhouche and D.

Flashover Performance of Station Post Insulators under Icing Conditions based on Electric Field Distribution

Estimation of the Electric Field and Potential Distribution on Three Dimension Model of Polymeric Insulator Using Finite Element Method

Measurement and simulation of the electric field of high voltage suspension insulators

Numerical Analyze of Corona Discharge on HVDC Transmission Lines

Electric Field and Potential Distributions along Non-Ceramic Insulators with Water Droplets. Integrated Engineering Software - Website Links

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

The Distortion Influence Simulation and Experimental Study of Human Body to High Voltage Power Frequency Electric Field

A New Contribution in Reducing Electric Field Distribution Within/Around Medium Voltage Underground Cable Terminations

I n many cold-climate regions of the world, overhead

Numerical Calculation and Analysis on the Surface Electric Field Characteristics of Hot-Line Robot

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER

Simulation Studies of Composite Insulators used in High Voltage Transmission

EFFECT OF DIELECTRIC BARRIERS TO THE ELECTRIC FIELD OF ROD-PLANE AIR GAP

Modeling of High Voltage Insulator Strings through Finite Element Method

Performance analysis of 1200 kv ceramic disc insulator string under normal and faulted conditions

THE APPROACH TO THE ANALYSIS OF ELECTRICAL FIELD DISTRIBUTION IN THE SETUP OF PAPER INSULATED ELECTRODES IN OIL

A Study of Electromagnetic Field Generated by High Voltage Lines Using Comsol Multiphysics

A Magnetohydrodynamic study af a inductive MHD generator

Electric Field Analysis and Experimental Evaluation of 400 kv Silicone Composite Insulator

Medical Physics & Science Applications

Power System Engineering Prof. Debrapriya Das Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Excerpt from the Proceedings of the COMSOL Conference 2010 Paris

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

Analysis of the thermal heating of poly-si and a-si photovoltaic cell by means of Fem

/14/$ IEEE

Teaching Electromagnetic Fields with Computer Visualization

Electrical, Electronic and Computer Engineering ENEL4HB - High Voltage 2

Some Aspects of Stress Distribution and Effect of Voids Having Different Gases in MV Power Cables

Experimental Study of the Artificial Neural Network Solutions for Insulators Leakage Current Modeling in a Power Network

sensors ISSN c 2008 by MDPI

A Review of the Dynamic Modelling of Pollution Flashover on High Voltage Outdoor Insulators

Computation of Electric Field for FGM Spacer Using Di-Post Insulator in GIS

EFFICIENCY OF DUAL WIRE-CYLINDER ELECTRODES USED IN ELECTROSTATIC SEPARATORS

Winai Onchantuek, Boonruang Marungsri, Anant Oonsivilai, Thanatchai Kulworawanichpong. WSEAS TRANSACTIONS on POWER SYSTEMS

Modeling of Degradation Mechanism at the Oil-Pressboard Interface due to Surface Discharge

Electric Field and Thermal Properties of Dry Cable Using FEM

ELECTRICAL AND THERMAL DESIGN OF UMBILICAL CABLE

Life Science Journal 2013;10(4)

HIGH VOLTAGE TECHNIQUES Basic Electrode Systems

Modeling PIN Photodiodes

Modelling the Electrical Parameters Of A Loudspeaker Motor System With The AC-DC Module (MEPLMSAM)

Dual-defect Model of Electrostatic Discharge in Polymeric Dielectrics

Electric Filed Simulation and Structure Optimization for 40.5kV GIS Based on Finite Element Method

Electrical, Electronic and Computer Engineering ENEL4HB - High Voltage 2

World Academy of Science, Engineering and Technology

Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics

Modeling PIN Photodiodes. Roger W. Pryor, Ph.D.,VP Research Pryor Knowledge Systems, Inc.

Modeling of Transmission Line and Substation for Insulation Coordination Studies

Possibilities of Using COMSOL Software in Physics

Capacity calculation of the electrotechnical scheme of discharge gap replacement of the ozonizer in the СOMSOL environment

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

A New Model of Investigating the Electric Field in Dielectric Liquid for Streamer Initiation

Behaviour of Water Droplets Under the Influence of a Uniform Electric Field in Nanocomposite Samples of Epoxy Resin/TiO 2

Real-time Monitoring of Leakage Current on Insulating Cross-arms in Relation to Local Weather Conditions

Comparison of an Analytical Method and Matlab to Model Electromagnetic Distribution in a Trough

Measurement of wettability for polymer materials using non-contact surface resistivity

Agenda for Today. Elements of Physics II. Capacitors Parallel-plate. Charging of capacitors

Magnetic and Thermal Analysis of Current Transformer in Normal and Abnormal Conditions

Virtual Prototype of a Dielectric Window for High Power Microwave Tubes

Hybrid Resistive-Capacitive and Ion Drift Model for Solid Gas Dielectrics

Modeling and Simulation of Artificial Core-Shell Based Nanodielectrics for Electrostatic Capacitors Applications

Adaptive numerical simulation of Streamer. Shailendra Singh

Effect of High Voltage Impulses on Surface Discharge Characteristics of Polyethylene

Magnetic Field Analysis

Space-Time Formulation for Finite- Element Modeling of Superconductors

Capacitors. David Frazier and John Ingram

Numerical Analysis of Electric Field in Three- Electrode Corona System Containing Ionized

Finite Element Analysis Method for Detection of the Corona Discharge Inception Voltage in a Wire-Cylinder Arrangement

EDEXCEL NATIONAL CERTIFICATE. UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2

PIEZOELECTRIC MATERIALS USED FOR PORTABLE

STUDY OF THE FACTORS THAT INFLUENCE THE EFECTIVE PERMITTIVITY OF THE DIELECTRIC MIXTURES

Simulation of Partial Discharge in Solid Dielectric Material

Assessing COMSOL Performances on Typical Electromagnetic Problems Faced by Turbo-Generator Manufacturers

Lecture contents Review: Few concepts from physics Electric field

Comparison of Finite Element Analysis to IEC for Predicting Underground Cable Ampacity

Dynamics and Modeling of AC Arc on Surface of Ice

Analysis of a Cylinder-Wire-Cylinder Electrode Configuration during Corona Discharge

Analysis of Geometrical Aspects of a Kelvin Probe

EVALUATION OF FLASHOVER VOLTAGE ON POLLUTED INSULATORS WITH ARTIFICIAL NEURAL NETWORK

Power Engineering Institute Warsaw University of Technology

Comparison between artificial neural networks algorithms for the estimation of the flashover voltage on insulators

A Modeling Study of Electrical Characteristics of Anisotropic Conductive Film Adhesives

Operation of an Electromagnetic Trigger with a Short-circuit Ring

Influence of Moisture on the Electrical Properties of XLPE Insulation

I. Conductors and Insulators :

The Lightning Study of Overhead Transmission Lines

Transcription:

International Journal of Energetica (IJECA) https://www.ijeca.info ISSN: 2543-3717 Volume 3. Issue 1. 218 Page 1-5 Modeling Electric Field and Potential Distribution of an Model of Insulator in Two Dimensions by the Finite Element Method Nassima M ziou 1,2, Hani Benguesmia 1,3*, Hilal Rahali 3 1 Laboratoire de Recherche (LI3CUB), Biskra University, ALGERIA 2 Department of Electrical Engineering, Faculty of engineer Sciences, Boumerdes University, ALGERIA 3 Department of Electrical Engineering, Faculty of Technology, M sila University, B.P. 166, 28 M sila, ALGERIA E-mail*: hanibenguesmia16@gmail.com Abstract The electrical effects can be written by two magnitudes the field and the electrostatic potential, for the determination of the distribution of the field and the electric potential along the leakage distance of the polluted insulator, the comsol multiphysics software based on the finite element method will be used. The objective of this paper is the modeling electric field and potential distribution in Two Dimensions by the Finite Element Method on a model of insulator simulating the 1512L outdoor insulator used by the Algerian company of electricity and gas (SONELGAZ). This model is under different conductivity, applied voltage, position of clean layer and width of clean layer. The computer simulations are carried out by using the COMSOL multiphysics software. This paper describes how Comsol Multiphysics have been used for modeling of the insulator using electrostatic 2D simulations in the AC/DC module. Numerical results showed a good agreement. Keywords: Model of insulator, Pollution, High voltage, Potential distribution, Eectric field. Received: 3/5/218 Accepted: 25/6/218 I. Introduction The pollution flashover, observed on insulators used in high voltage transmission, is one of the most important problems for power transmission. It is a very complex problem due to several factors such as the modeling difficulties of complex shapes of the insulators, different pollution density at different regions, non-homogeneous pollution distribution on the insulator surface and unknown effect of humidity on the pollution. In the literature, some static and dynamic models were developed by making some assumptions and omissions to predict the flashover voltages of polluted insulators [1,2]. The problematic related to such a study, is in the difficulty to determine, experimentally, in a precise way, the distribution of the potential and moreover, that of the electric field along polluted insulators. Indeed, these measurements, which can only be performed in the laboratory, require heavy and sophisticated equipment, usually expensive [3]. However, there is an alternative to experimental measurements, consisting of the use of digital tools to determine electrical potential and field distributions along polluted insulators. With the increasing development of increasingly powerful computing and numerical computation software, it is now possible to obtain fast and accurate results. It is very interesting to have a simulation environment that includes the possibility of adding different physical phenomena to the studied model. It is in this philosophy that Comsol Multiphysics has been developed. It is a finite element numerical computation software allowing to model a large variety of physical phenomena characterizing a real problem. Among the numerical methods available and applicable to electromagnetic calculations, the Finite Element Method. Thus, its use, using commercial software COMSOL Multiphysics, was used to carry out the various simulations [4]. It is very interesting to have a simulation environment that includes the possibility of adding different physical phenomena to the studied model. It is in this philosophy that Comsol Multiphysics has been developed. The determination of the distribution of the field and the electric potential on the insulating surfaces, in the presence of the pollution, has been the subject of numerous researches [5-7]. The main aim of our work is to see the distribution of the field and electric potential on a type 1512L cap and IJECA-ISSN: 2543-3717. June 218 Page 1

5mm pin insulator model of artificially polluted high voltage, under AC voltage, subjected to various parameters such as the conductivities. II. Description of the insulator model In our simulation, we chose model 1512L insulator plan. The dimensions of the model defined by Moula et Hilal [8,9], The model is a plane that is constituted by a glass plate of (5x5mm) on which are placed two electrodes, one of ground and the other of high voltage, and the two electrodes are placed on two aluminum conductive bands that are cut (5x 5mm) for the glass and (5x3mm) for the two electrodes. The distance between two electrodes is 292mm. Real model 5mm HV electrode Model plane of insulator Figure 1. Real model vs Model plane of insulator. III. Identification of domains in the comsol software COMSOL Multiphysics is an analysis software and finite element solver, which has various applications in physics and engineering especially coupled phenomena, or multi-physics. The different domains of the insulator studied in COMSOL Multi-physics were defined by introducing for each of them the dielectric constant ε r and the conductivity σ (µs/cm). The model is a plane that consists of three parts with different properties: the glass having a relative permittivity equal to ε r =6, and the conductivity σ=1-12, the aluminum electrodes of relative permittivity of ε r =1 6 and conductivity of σ=1 6, attached to the polluted layers having a relative permittivity of 8 and of which we vary the conductivity. The air a rounding the insulator has a permittivity of ε r =1 and σ=1-14. This software uses the finite element method; the simulation of the model of insulator can be summarized in the following four successive steps: The first step is to define the two-dimensional geometry of the model in comsol. The second step is the definition of the electrical properties of the materials present. This consists in defining the relative permittivities and the volumic conductivities for each part of the model. In addition, it is necessary to define the boundary conditions that result in the potential imposed on each electrode (Dirichlet conditions). The third step is devoted to solving the problem by applying the numerical method and by the construction of the system of equations ( div grad V div grad V ), and this in introducing the factors of each part of the equation. The final step is to display the results as the electrical potential and field with their modules, following each part of the plane model and their distributions. IV. Simulations results Several application-specific modules are available for COMSOL Multiphysics. We chose the AC/DC module. This module simulates electrical components and devices that depend on electrostatic, magnetostatic and electromagnetic quasi-static and another application. For the case studied, we have taken as boundary conditions for the active electrode (HV) a constant potential equal to 3kV (high voltage) and ground electrode a l potential equal to V. The mesh density of the finite elements is important for critical areas (close to the surface of the insulator) where greater precision is required, because the electrical properties of the materials are very changeable. Indeed, we considered 1376 elements, and after refining we find 554 elements in the case of a polluted insulator model. the mesh is illustrated in the clean case, in the figure 2. Figure 3. Mesh of the plane model The study of potential and electric field distributions is along a plane model of real 1512L insulator. To illustrate the impact of any parameter denoted x, we plot the potential and the field as a function of the isolator leakage distance for different L, with L <=> (L1, L2 and L3) shown in figure 3. IJECA-ISSN: 2543-3717. June 218 Page 2

Electrical Tension poltential (V) (V) Leakage distance 292mm L 1 L 2 L 3 Clean layer (L) HV (3kV) Glass V Clean state Polluted layer Figure 3. Plan model with all specifications IV.1. Distribution of electrical potential We are interested in determining the potential distribution along the insulator leakage distance as a function of the conductivities. For this, we have introduced in the software different conductivities values (7, 12, 24, 3 μs/cm), with the applied voltage equal to 3kV and a clean layer (Li) fixed, equal to 3cm. Figures 4 to 5 illustrates respectively the variation of the potential along of the leakage distance and the potential distribution for the conductivities examined. There is a low influence on the potential distribution when you vary the values of the conductivities, the potential distribution along the leakage distance of a 1512L model, a rapid reduction in clean layer levels and a slowdown in the polluted layers. If the clean model the potential decreases in a linear way, on the other hand for the polluted case the clean layer (Li) forms an obstacle when the potential stays stable then decreases quickly until the potential equal to V. 7µS/cm 12µS/cm 3 x 14 Propre 7 µs /cm 12 µs /cm 2.5 x 1 4 x 1 4 24 µs /cm 3 µs /cm 24µS/cm 2.99 2 2.98 2.97 8.9 9 9.1 14.5998 14.5998 14.5998 14.5998 1 3.5 2 1 2 2.1 2.2 5 1 15 2 25 3 Ligne de Fuite en (cm) Leakage distance (cm) Figure 4. Electrical potential-leakage distance for different conductivities 3µS/cm Figure 5. Distribution of electrical potential for various conductivities in two cases, Echogram & Equipotential lines IJECA-ISSN: 2543-3717. June 218 Page 3

Electric field(kv/m) Champ électrique en (KV/m) IV.2. Distribution of electrical field We are interested in the influence of the conductivity on the electric field distribution for different values of the conductivity (7, 12, 24, 3 μs / cm) with applied voltage equal to 3 kv. Figures 6 to 7 respectively illustrate the variation of the electric field along the leakage distance and the electric field distribution for the conductivities cited above. Clean state 35 3 Propre 7 µs /cm 12 µs /cm 24 µs /cm 3µS /cm 25 2 7µs/cm 15 1 5 5 1 15 2 25 3 Ligne de Fuite en (cm) Leakage distance(cm) Figure 6. Electric field-leakage distance for different conductivities We noticed after the appearance of the results that the change of the conductivities has a slight effect on the intensity of the electric field; it is zero inside the two electrodes, because aluminum foil is a perfect conductor. in the proper case the electric field take the value 1 kv/m is remains constant along the leakage distance to the ground electrode is canceled. In figure 7, you can see for example in the case own the model corners is in red, which explains the intensity of the electric heat is very high, the concentration of electric arcs on the corners of the model, may be due to shape of the model, can also be explained by the movements of concentrated electrons in these corners (leakage current). 12µs/cm 24µs/cm 3µs/cm Figure 7. Distribution of electric field for various conductivities in two cases, Echogram & Equipotential lines IJECA-ISSN: 2543-3717. June 218 Page 4

V. Conclusion In this paper we present the results of different simulations performed on the model of a 1512L isolator. Using the COMSOL Multiphysics software, based on the finite element method, we have been able to analyze the potential and electric field distributions of the 1512L plane model, subjected to electro-geometric parameter, namely the conductivities. As main results, we can say that the conductivities of the polluting layer have practically no effect on the distributions of the potential and the electric field. On the other hand, the intensity of the electric field is more important at the level of the clean layer. The vector of the electric field in the plan model is parallel because the configuration of the geometry represents a distribution of the uniform electric field. (plan-plan). The variation of the conductivities has a slight influence on the intensity of the electric field. Properties and Applications of Dielectric Materials (ICPADM) 215. ( in press) [8] B.Moula, A. Mekhaldi, M. Teguar, Evaluation of insulator's energy under uniform pollution condition, In: Energy Conference and Exhibition (ENERGYCON), 212 IEEE International. IEEE, 212, pp 975-978. [9] H. Rahali, Comportement d un modèle d isolateur sous différentes configurations de pollution sous tension alternative 5 Hz, Magister's thesis, Ecole Nationale Polytechnique, Algiers, Algeria, 211. Acknowledgements We thank the anonymous referees for their useful suggestion. References [1] H. Benguesmia, N. M ziou, A. Boubakeur, Simulation of The Potential and Electric Field Distribution On High Voltage Insulator Using The Finite Element Method, Diagnostyka, vol 19 (2), 218, pp 41-52. [2] H. Benguesmia, N. M ziou, A.M. Chouchou, L Rachdi, Experimental Study of the various pollution and simulation of potential and electric field distribution using FEMM at a high voltage insulator under alternative current, International Symposium on Computational and Experimental Investigations of Fluid and Structure Dynamics, (CEFSD215-94), Hammamet, Tunisia, March 16-18, 215, pp 144. ISBN: 978--9938--9564--2--9. [3] A. Nekahi, S. G. mcmeekin, M., Farzaneh, Effect of pollution severity on electric field distribution along a polymeric insulator, In : Properties and Applications of Dielectric Materials (ICPADM), 215 IEEE 11th International Conference on the. IEEE, 215, pp 612-615. [4] COMSOL Multiphysics, User s Manual, Version 5. [5] T. Zhao, M. G. Comber, Calculation of electric field and potential distribution along non-ceramic insulators considering the effects of conductors and transmission towers, IEEE Transactions on Power Delivery, vol 15 (1), 2, pp 313-318. [6] L. A. Dissado, J. C. Fothergill, Electrical degradation and breakdown in polymers, IET (No.9), 1992. [7] Arshad, A. Nekahi, S.G. McMeekin, M. Farzaneh, Effect of Pollution Severity on Electric Field Distribution along a Polymeric Insulator, 11th International Conference on the IJECA-ISSN: 2543-3717. June 218 Page 5