JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Similar documents
Séminaire Équations aux dérivées partielles École Polytechnique

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Séminaire Équations aux dérivées partielles École Polytechnique

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION C

A note on the generic solvability of the Navier-Stokes equations

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES DE L INSTITUT FOURIER

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

Séminaire d analyse fonctionnelle École Polytechnique

ANNALES MATHÉMATIQUES BLAISE PASCAL

Séminaire Équations aux dérivées partielles École Polytechnique

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

ANNALES DE L I. H. P., SECTION A

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p

ANNALES DE L I. H. P., SECTION B

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and Banach spaces

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

ANNALES DE L I. H. P., SECTION C

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

Séminaire de Théorie spectrale et géométrie

COMPOSITIO MATHEMATICA

Groupe de travail d analyse ultramétrique

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION B

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Sheaves and Cauchy-complete categories

ANNALES DE L I. H. P., SECTION A

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. A note on the generalized reflexion of Guitart and Lair

RICHARD HAYDON Three Examples in the Theory of Spaces of Continuous Functions

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

COMPOSITIO MATHEMATICA

Rendiconti del Seminario Matematico della Università di Padova, tome 88 (1992), p

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION C

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

RAIRO INFORMATIQUE THÉORIQUE

ANNALES DE L I. H. P., SECTION C

Séminaire Brelot-Choquet-Deny. Théorie du potentiel

INFORMATIQUE THÉORIQUE ET APPLICATIONS

REVUE FRANÇAISE D INFORMATIQUE ET DE

ANNALES DE L I. H. P., SECTION A

Groupe de travail d analyse ultramétrique

ANNALES DE L INSTITUT FOURIER

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES DE L I. H. P., SECTION B

RÜDIGER VERFÜRTH A note on polynomial approximation in Sobolev spaces

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

The center of the convolution algebra C u (G) Rendiconti del Seminario Matematico della Università di Padova, tome 52 (1974), p.

Série Mathématiques. MIRCEA SOFONEA Quasistatic processes for elastic-viscoplastic materials with internal state variables

RAIRO MODÉLISATION MATHÉMATIQUE

RAIRO ANALYSE NUMÉRIQUE

ANNALES DE L I. H. P., SECTION C

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

ANNALES DE L I. H. P., SECTION C

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and topological vector spaces

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

H. DJELLOUT A. GUILLIN

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p

Local Lyapunov exponents and a local estimate of Hausdorff dimension

A maximum principle for optimally controlled systems of conservation laws

RAIRO MODÉLISATION MATHÉMATIQUE

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

INFORMATIQUE THÉORIQUE ET APPLICATIONS

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES DE L I. H. P., SECTION C

RAIRO. RECHERCHE OPÉRATIONNELLE

ANNALES DE L I. H. P., SECTION A

Séminaire Dubreil. Algèbre et théorie des nombres

Série Mathématiques. C. RADHAKRISHNA RAO First and second order asymptotic efficiencies of estimators

ANNALES DE L I. H. P., SECTION B

ANNALES DE L I. H. P., SECTION C

RAIRO MODÉLISATION MATHÉMATIQUE

ANNALES. FLORENT BALACHEFF, ERAN MAKOVER, HUGO PARLIER Systole growth for finite area hyperbolic surfaces

ANNALES DE L I. H. P., SECTION C

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

Séminaire Équations aux dérivées partielles École Polytechnique

ANNALES DE L I. H. P., SECTION C

Transcription:

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES DAVID JERISON CARLOS E. KENIG The functional calculus for the Laplacian on Lipschitz domains Journées Équations aux dérivées partielles (1989), p. 1-10. <http://www.numdam.org/item?id=jedp_1989 A4_0> Journées Équations aux dérivées partielles, 1989, tous droits réservés. L accès aux archives de la revue «Journées Équations aux dérivées partielles» (http://www. math.sciences.univ-nantes.fr/edpa/), implique l accord avec les conditions générales d utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The Functional Calculus for the Laplacian on Lipschitz Domains David Jerison Department of Mathematics M.I.T. Cambridge, MA 02139 Carios E. Kenig Department of Mathematics University of Chicago Chicago,IL IV-1

Let fl c IR" be bounded, open, and connected. We define W 'P(n) as the closure f a t^ of C^H) in the norm f, _ = f S ^f(x) Pdx. W^fl) is the closure K?p jua <k ftc 0 u of C (n) in the same norm. The Dirichlet problem u b --Au = f in H u ^ = 0 on 5^ n defines a positive selfadjoint operator on L (H). Thus there are eigenvalues 0 < AQ < ^1 ^9 ^ ^d a complete orthonormal sequence of eigenfunctions ^0,^1,... satisfying -AA = AiA in H A e C (n) and the boundary condition A e W 152 (^). We denote this operator by Ay^. Similarly, we consider the Neumann problem ~Au f in n C/U "^1 9u^l ^ = 0 on 9fl The Poincare inequality f f(x)- ^ ^vel 2^ [ ^n Vf(x) 2 dx.1,2/ holds for all f W ' (Q), under a mild regularity hypothesis on 9SI. In this note will only be considering Lipschitz domains, for which it is easy to verify the Poincare inequality. There are then eigenvalues 0 = ^ < /^ < /i«<... and a complete orthonormal 1 c ) system of eigenfunctions ^ew' (0) n C 00^) satisfying A^>,=/A,^, in fl, and verifying the boundary condition of (N) in the following weak sense: IV-2

f VvV^=/^f v^ for all v e W 112^). (^( x ) is the constant function.) We denote the corresponding operator A^r. One of the main objects of study in the functional calculus is the fractional poweisof the operator. In this talk we will focus on the square root. Denote A = ( AD)' B = (-A^) 1 / 2. If f,g e W^' 2^), then [ AfAg= [ Vf.Vg, J 'n o. JftJ o so that Af n = Vf n. Similarly under the mild regularity hypothesis on 9SI, i/(n) i/(n) J^ [ BfBg= f Vf.Vg 'n for all f,g e W l ' 2 (0), so that Bf <, = Vf <,. I/(ft) L^ft) When (Kl is smooth, the theory of pseudodifferentiaj operators and Calderon Zygmund theory show that, in addition, and Af s Vf _ LP(ft) LP(n) and Bf ^ Vf _ ip(n) LP(n) for all p, 1 < p < oo. Here and elsewhere the notation A < B means there is a constant C such that A < CB. A ^ B means both A < B and B < A hold. Theorem 1. Suppose that n > 3 and let fl, be a Lipschitz domain (i.e., (Kl is given locally as the graph of a Lipschitz function). Then (a) there is pi > 3 depending on the Lipschitz constant such that if I/PO + I/PI = 1, IV-3

afld "^(O)" 1^)^^^^ "^(n)" 1^^)^1^^!- In particular, Af p ^ Vf p for pp < p < p^ (b) The same result holds for the operator B. (c) These inequalities are sharp. For instance, given p > 3, there is a Lipshitz domain ft for which Vf is not bounded bv a constant times Af LP(ft) LP(ft) (d) If ft isji C domain, then (a) and (b) hold for all p, 1 < p < oo. When n = 2, there is a similar result, but the range of exponents in parts (a), (b) and (c) is larger: pg < p < oo or 1 < p < p,, where 1/pp + 1/p, = 1 and p, > 4, rather than p, > 3. Let us give some applications of Theorem 1 to the inhomogeneous Dirichlet and Neumann problems and to the initial value problem for the heat equation. For purposes of comparison, we recall the estimates that hold when ft has a C 00 boundary. For u satisfying (D) or (N), we have (a) (/?) "^(ft)^1^) "^"L^fft) ^ ^'Vfft) 1<P<00 1 < P < n ' 1/q = 1/P - I/" (7) IIUII L < 4ft) ^ ^'^LPfft) 1 < p < n/2 ' l/q = l/p ~ 2/n ' The extent to which these inequalities may be extended to Lipshitz domains was treated by B. Dahlberg [1] in the case of the Dirichlet problem. He showed IV-it

(i) there exists a Lipschitz domain and f e C (n) such that V 2!! (? LP(n) for every p, 1 < p < oo. (Thus (a) fails.) (ii) (/?) holds for 1 < q < 3 + e, where e > 0 depends on the Lipschitz contsnt, and this is sharp. (iii) In the case of C domains (/)) holds for all q, 1 < q < oo. Notice that in the case of the Dirichlet problem part (7) obviously extends to arbitrary domains n. In fact, by the maximum principle, Green* s function for the Dirichlet problem is smaller than the Newtonian potential on R 11. The estimate on n then follows from the well-known fractional integral estimates on R 11. The first corollary of Theorem 1 is that we recover Dahlberg's results (ii) and (iii) and, in addition, the same results hold in the Neumann problem. In fact, (-^r 1 = A- 2, so Vu q = HVA^fllq < AA^f q = HA- 1^ < \^\ < AA^ f = f. The first and last inequalities follow if 1 < q < p. and 1 < p < p.. The middle inequality is just the usual fractional integral inequality. We have also obtained a sharper counterexample than (i). Proposition. There is a C domain and a solution u to (D) with f 6 C (n) but 2 1 V u does not belong to L (n). There is a similar counterexample for the Neumann problem (N). This counter example can be expressed in terms of Greeny function by saying that f 2 1 V G(x,y)f(y)dy does not belong to L (n). While the question in part (a) has a ^ x negative answer, a variant of this question posed by J. Necas has a positive answer. He asked whether one can solve IV-5

(*) -> -Au = div f u ^Q = 0 in n in 3n -> for vectors f with components in L^(n), with the natural estimate Vn ^ < C f. In other words, what are the boundedness properties of L^n) LP(n) J^ V V G(x,y) f(y)dy? One can already see the difference between putting both x y derivatives on the x variable and splitting them between x and y from the fact that the case p = 2 is immediate. Theorem 2. Let p^ and p. be as in Theorem 1. (a) Let u be a solution to (*). Vu < C T for pp < p < p^ (b) The range of exponents p is best possible (n > 3). (c) For C domain the estimate holds for all p, 1 < p < oo. (d) There are similar results for Neumann boundary data. 2(a) as We can deduce Theorem 2(a) from Theorem l(a) as follows. Rephrase Theorem IIVA^fll _ < C f. LP(n)~ w^n) where W^^n) is the dual space of W^^O) with 1/p + 1/p' = 1 or iv-6

^P ^^m^^w For pn < p < pi, Theorem l(a) implies Ag _ ^ g. and by duality u 1 LP(n) W^n) IIA^fH, ^!f i,.but then HA^H,. ^ IIAA^fH LP(0) W- 1^) W^P(n) LP(0) IIA^fll. ^ f.. as desired. LP(n) w ^(n) Since A is selfadjoint (a') holds if and only if (a 7 ), holds. Thus for the counterexample in Theorem 2(b) it is enough to construct a Lipschitz domain for each p > 3 and solution u such that Vu does not belong to LP(fl). Let r be a circular cone of angle a. There exists function u harmonic in the complement c r given in polar coordinates by u(r,^) = r A (f>{0) for A > 0 depending on a and satisfying u w = 0. When n = 3, it is easy to check that A tends to zero as the p operator a tends to zero. Let f^ = B n F where B is a ball centered at the vertex of r. Let ^ C (B) be such that ^ is identically 1 in a neighborhood of the vertex. Then v = u^ satisfies Av 6 C (n), v/9tl = 0. However, Vv ^ r which belongs to LP(H) for p < 3/(1 A) only. For a counterexample in the Neumann problem we need to construct a cone for which there is a solution of the form r (f>(0) with A > 0 arbitrar/ily small. Equivalently, we need to find a region in the sphere and an eigenfunction 0 in the Neumann problem for the spherical Laplacian with eigenvalue arbitrarily close to zero. This can be accomplished with a region on the sphere with the shape in which the width of the narrow strip joining the two disks tends to zero. The IV-7

counterexample for n = 3 leacbimmediately to counterexample for n > 3 by adding extra independent variables. Another application of Theorem 1 is to the heat equation in R, x H with initial o data in W 151^). Let u(x,t) = (e""^ f)(x) then ^u - Au = 0 in R^ x n, u(x,t) = 0.2 for x e ^ and u(x,0) = f(x). Vu(-,t) lp < Au(-,t) lp = e LA Af ^p < Af < Vf. The first inequality holds for p < pi, the last for p > pn. i LP(H) ' LP(n) The middle inequality follows from the properties of the heat semigroup, (see [3].) Note that the estimate is independent of t. There is a similar result for the Neumann problem. Finally, let us indicate some of the main ideas of the proof of Theorem 1 and the main obstacles. We will focus on the inequality " "^W 011^) 1<P<P ' which is the same as Vg < C Ag. We proceed by complex interpolation. First of all, (1) IIA^fH - m, 1 < r < oo holds for any domain because of Stein's (Littlewood-Paley) multiplier theory for semigroups [3]. If we knew (2) IIA"" 3 / 2^,/<^ <C f o wy 212^) L 2^) then we could deduce (*) for 3/2 < p < 3 by interpolation. (The spaces W^ for fractional a are defined from their integer counterparts using complex interpolation.) IV-8

HA ' i -1/99 ^ PI 9. If we substitute f = A l / 2 g into (2) we find (2) is W ^"'"(n) I/(n) equivalent to (2-) IIA-^gH 3/22 <C g,/... wy"'^) w^/ 2 ' 2^) Unfortunately this is false. Let us explain why. If (2') were true, then we could solve Au = g in 0 with u e W 3 / 2 ' 2^) for every g W" 1 / 2 '^11 ). Let w 6 W^2'^). Then g = Aw e W^2'^"), and there is a solution to Au = Aw in 0 satisfying u Wy 2 ' 2^). Let v = w-u, then v is harmonic in 0 and v e W 3 / 2 ' 2^). We showed in [2] that for harmonic functions v in a Lipschitz domain v e W 3 / 2 ' 2^) if and only if the restriction of v to 50 belongs to W 112^). Since u vanishes on (Kl, we can conclude that w restricted to <Kl belongs to W 112^). However, the restriction property w e W^2'^") restricts to W 112^) does not hold for Lipschitz domains, so (2) and (2 7 ) are false. We are indebted to Guy David for pointing out that this restriction property fails. Not only does the endpoint estimate fail, but estimates in Theorem l(a) for p^ > p > 3 require results of type (2) for exponents p > 2. The correct estimate is (3) HA-^II ^ <C f, 1+--^P -l-e+-p W P (0) W P (0) for 0 < e < 2--2/p+^,l < p < 2 + <?,(?,< ^,e sufficiently small and positive. Notice that we are able to treat exponents p = 2 and slightly larger only at the expense of decreasing the order of smoothness. This corresponds to a restriction lemma: Functions in l+"e,p W p (0) restrict to the space A?^^) for e > 0, where AW^O) is the 8pftee- Besov sp^e ^ ^ ^^. Jj 1^-^^,^>^. ^ } ap<?d / 71 /y \//^*'»- ' '[ IV-9

The main point of the proof is that there is also converse to the restriction lemma: if Av = 0 in 0 and v n^ belongs to A^P^), then v belongs to W p 5 (H), 1<p<2+ 6. References [1] B.E.J. Dahlberg, "I/^ estimates for Green potentials in Lipschitz domains", Math. Scand. 44 (1979), 149-170. [2] D. Jerison, C.E. Kenig, "The Neumann problem on Lipshitz domains", Bull. A.M.S. 4 (1981), 203-207. [3] E.M. Stein, "Topics in harmonic analysis related to the Littlewood Paley theory", Annals of Math Studies, 63, Princeton U. Press, 1970. IV-10