JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

Similar documents
COMPOSITIO MATHEMATICA

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

COMPOSITIO MATHEMATICA

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

Groupe de travail d analyse ultramétrique

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

Séminaire Équations aux dérivées partielles École Polytechnique

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES DE L INSTITUT FOURIER

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION C

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

A note on the generic solvability of the Navier-Stokes equations

COMPOSITIO MATHEMATICA

Rendiconti del Seminario Matematico della Università di Padova, tome 88 (1992), p

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. A note on the generalized reflexion of Guitart and Lair

COMPOSITIO MATHEMATICA

Séminaire de Théorie spectrale et géométrie

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Sheaves and Cauchy-complete categories

ANNALES DE L I. H. P., SECTION A

ANNALES MATHÉMATIQUES BLAISE PASCAL

Groupe de travail d analyse ultramétrique

ANNALES DE L I. H. P., SECTION B

On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and Banach spaces

RICHARD HAYDON Three Examples in the Theory of Spaces of Continuous Functions

ANNALES DE L I. H. P., SECTION B

ANNALES DE L I. H. P., SECTION A

RAIRO MODÉLISATION MATHÉMATIQUE

Séminaire Équations aux dérivées partielles École Polytechnique

ANNALES DE L I. H. P., SECTION A

Séminaire Équations aux dérivées partielles École Polytechnique

ANNALES DE L I. H. P., SECTION C

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

COMPOSITIO MATHEMATICA

Séminaire d analyse fonctionnelle École Polytechnique

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES DE L INSTITUT FOURIER

COMPOSITIO MATHEMATICA

INFORMATIQUE THÉORIQUE ET APPLICATIONS

ANNALES DE L I. H. P., SECTION B

COMPOSITIO MATHEMATICA

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES. FLORENT BALACHEFF, ERAN MAKOVER, HUGO PARLIER Systole growth for finite area hyperbolic surfaces

ANNALES DE L I. H. P., SECTION C

The center of the convolution algebra C u (G) Rendiconti del Seminario Matematico della Università di Padova, tome 52 (1974), p.

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

REVUE FRANÇAISE D INFORMATIQUE ET DE

RAIRO INFORMATIQUE THÉORIQUE

cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

H. DJELLOUT A. GUILLIN

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Cahiers de topologie et géométrie différentielle catégoriques, tome 32, n o 2 (1991), p.

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Séminaire Brelot-Choquet-Deny. Théorie du potentiel

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Measure characteristics of complexes

ON TAMELY RAMIFIED IWASAWA MODULES FOR THE CYCLOTOMIC p -EXTENSION OF ABELIAN FIELDS

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION C

The structure of the critical set in the general mountain pass principle

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p

Stickelberger s congruences for absolute norms of relative discriminants

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES DE L I. H. P., SECTION C

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and topological vector spaces

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

The Kronecker-Weber Theorem

COMPOSITIO MATHEMATICA

BULLETIN DE LA S. M. F.

COMPOSITIO MATHEMATICA

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

RAIRO MODÉLISATION MATHÉMATIQUE

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

REVUE FRANÇAISE D INFORMATIQUE ET DE

Série Mathématiques. Annales scientifiques de l Université de Clermont-Ferrand 2, tome 95, série Mathématiques, n o 26 (1990), p.

RÜDIGER VERFÜRTH A note on polynomial approximation in Sobolev spaces

Transcription:

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX RADAN KUČERA A note on circular units in Z p -extensions Journal de Théorie des Nombres de Bordeaux, tome 15, n o 1 (2003), p. 223-229 <http://www.numdam.org/item?idjtnb_2003 15_1_223_0> Université Bordeaux 1, 2003, tous droits réservés. L accès aux archives de la revue «Journal de Théorie des Nombres de Bordeaux» (http://jtnb.cedram.org/) implique l accord avec les conditions générales d utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

223 A note on circular units in Zp-extensions par RADAN KU010CERA RÉSUMÉ. Nous nous intéressons aux limites projectives des groupes de Sinnott et des groupes de Washington des unités circulaires dans la Zp-extension d un corps abélien. Nous montrons par un exemple qu en général ces deux limites ne coincident pas. ABSTRACT. In this note we consider projective limits of Sinnott and Washington groups of circular units in the cyclotomic Zpextension of an abelian field. A concrete example is given to show that these two limits do not coincide in general. 1. Introduction For any positive integer m, let ~ ~.,.L e21ri/m and let Q(m) be the mth cyclotomic field. Let K be an abelian field of conductor m, i.e., m is the smallest positive integer such that K is a subfield of Let C(K) be the Sinnott group of circular units of K (see [S]). It is well known (see [L]) that this group can be defined as the intersection of the group E(K) of all units in K and the subgroup of the multiplicative group of K generated by -1 and by all norms (~), where 1 rim and (a, r) 1. Let C(K) be the group of cyclotomic units of.~ mentioned in [W, page 143], i.e., C(K) - E(K) n C{~ 2~ ). We shall call the latter group the Washington group of cyclotomic units. Now, let p be an odd prime which does not ramify in K. Let B/Q be the cyclotomic Zp-extension of the rational numbers, i.e., Q Bo c B1 C B2 C... are abelian fields ramified only at p, [Bn : Q] pn, and B U Bn. Hence KB KBn is the cyclotomic Zp-extension of K. We shall consider the following projective limits (with respect to norms) C Zp), and C Zp). It has been proved in [KN] that C is of finite index in C. But there has remained an open or not. This note is devoted to the question whether C ~ in general negative answer to this question. More precisely, by an explicit construction we shall prove the following Manuscrit requ le 3 d6cembre 2001. Supported by the grant 201/01/0471 of the Grant Agency of the Czech Republic.

224 Theorem. For p 3, there is an abelian field K of degree 9 over Q such that there is 77 E C(KBN) and n Let us mention that by an easy and straightforward modification of our construction one can get, for any given odd prime p, an example of an abelian field of degree p2, ramified at 2p + 1 primes, whose cyclotomic Zp-extension satisfies p I [C : C]. A similar example has been given independently by J.-R. Belliard, who describes in [B] an abelian field K of degree p2, ramified at p + 1 primes, and shows by means of an explicit construction in Zp-extension KB/K that C is not a A-free A-module, where A Zp[[Gal(KB/K)]]. Moreover, he proves here that there exists - E C such that EP E C and - 0 C if and only if C is not a A-free A-module. To compare these two constructions: on the one hand our example needs more ramified primes, but on the other hand we do not need to tensor by Zp to be able to define units rln E giving the norm-coherent sequence (in) E C, example is more explicit. so - in some sense - our Notation. Let ql, q2,.. -, q7 be different primes, all congruent to 1 modulo 9, chosen in such a way that ql ~ 1 (mod 27) and that for different i, j E {I, 2,..., 71 the prime qi is a cubic residue modulo qj. For each i E {I, 2,...,7}, let x2 be a cubic Dirichlet character modulo qi. Let K be the abelian field corresponding to the group of Dirichlet characters generated by X1X2X3X4X5 and x2x3x4x5xsx7. So K : i following four subfields of degree 3: Q] 9 and K has the For the sake of brevity, let us write Ko K, f o M2M4M6?7? K5 Q, is 1. For any prime q 3/o? let Frob(q) mean a fixed Frobenius automorphism of q on KB /Q, i.e., any chosen extension to KB of the Frobenius automorphism of q on the maximal subfield of KB unramified at q. Since qi is a cube modulo folqi for any i 1, 2,..., 7, the previous choice can be done in such a way that E for each i 1, 2,..., 7. We shall introduce generators of For any i 0,1,..., 4 and any integer n > 0 let

225 Moreover, let -1 and for any positive integer n. The following lemma shows that units Ei,j with 0 j n are generated by all conjugates of the units eij, where j 0 or i n. Lemma 1. For any integer n > 0, the Sinnott group of circular units C(K Bn) is the Galois module generated by Proof. Using [L], C(KB,,) is the intersection of E(KBn) module D generated by -1 and by all norms and of the Galois where 1 r I 3n+l foe We can write r 3jq, where 0 j n + 1, and q fo. Let So, denoting B_ 1 Q, we have n KBn KiBj-1- Therefore But where q in the product runs over all primes q ( r, q f 3J fj (an empty product equals 1). Hence D is generated by -1, by for all i 0,1,..., 4 and j 0,1,..., n, and by for j - 1, 2,..., n ~- 1. If 0 j n then and (3 + ) (1 - (3nH)(1 - ~3 +1 ). Therefore.D is the Galois module generated by - l, by Ej, j for all i 0, 1,..., 4 and j E 10,?~}, It is well-known that all the numbers but the last one are units and that the quotient of any two conjugates of the last number is a unit. The lemma follows using the fact that the automorphism sending each root of unity to its fourth power generates the Galois group of 0 and by { 1- (3n+l )(I - ~~ +1 ). The generators described by Lemma 1 are not independent. For any integers j > 0 and i, l E ~0,1,...,,5} such that 1 0 or i 5 we have the

226 following relation where q in the product runs over all primes dividing filfi. Moreover, for any integer j > 0 and i E 10, 1,..., 5} Construction. As we have already mentioned, the Frobenius automorphism Frob(qi) E Gal(KB/K) for each i 1, 2,..., 7. Moreover, qi - 1 (mod 9) implies that Frob(qi) is a cube in Gal(KB/K) - (7G3, +). Therefore there is unique o E Gal(KB/K) such that 03 Frob(ql)-1. Because 1 (mod 27), ~ is a topological generator of Gal(KB/K). Hence, for each i 2, 3,..., 7 there is a uniquely determined 3-adic integer ai satisfying Frob(qi)-1 Ø30i. It is easy to see that Gal(KBn~Bn) ~ {id} is the disjoint union Therefore Let us consider the group C(KBn)/(C(KBn))3 written additively, where we shall identify any unit ofc(kbn) with its image in C(KBn)/(C(KBn))3. Therefore the identity (4) means Let us fix n > 2. By abuse of notation, we shall denote the restriction of 0 to KBn again by 9. We shall apply on (5). Since 1, we have It is easy to see that + lj;203n-l is the norm operator of K Bn/ K Bn-1- Using (6) and the norm relations (2) and (1) we obtain

227 Similarly, for any i 2, 3, 4 using (2) we have Let be a positive integer satisfying (mod 3nZ3). Then where and (6) and (1) give A similar computation gives Putting (5), (7), (8), and (9) together, we obtain This equality in C(KBn)/(C(KBn))3 such that means that there E C(KBn) Since KBn is a real abelian field, is uniquely determined by the previous identity. It is easy to see that E C(KBn-i), E KBn-1- Since KB,,/Q is abelian, we have E hence E Q(3n fo). On the other hand 1Jn-1 E imphesq,,-, E f-)). But for cyclotomic fields, the Sinnott groups of circular units satisfy the Galois descent (see [GK]), so This means

228 Since we have It is easy to see that for any positive integers a and b Using the previous identities we can easily prove that the numbers aj (n) can be replaced by a~~ in (10). Using (1) this implies that so Denoting 1]0 we have proved E C(KBn), so r~3 e To show that 11 rt it is enough to prove that C(KB1). For this purpose we shall describe a basis of C(KB1). Lemma 2. There is a basis of C(KBi) consisting of (i) 4 conjugates of each of the units ~1,1, ê2,1, e3,i, and ~ ~ s4,1, and (ii) of 2 conjugates of each of the units ê1,o, 2,0, ê3,0, é:4,0, and ~5,1 Proof. Since which is the number of units mentioned in the lemma, it is enough to show that they together with -1 generate We have chosen the primes ql,.. -, q7 in such a way that all automorphisms Frob (q7 ) act trivially on KB1. Hence relations (4) and (2) for n 0, 1 give -3, 1, so Eo,o eo,l 1. Because 5,0-1, Lemma 1 gives that the multiplicative group, generated by -1 and by all conjugates of units mentioned in the lemma, equals Let us fix any i {I, 2, 3, 4} and consider The Galois groups Gal(KZ B1 /Ki ) and Gal(KiB1/ B1) are groups of order 3; let p and v be their generators, respectively. Then [L and v generate Gal(KiBi /Q), so with r, s 0, l, 2, is the system of all conjugates of Ei,i. Using the trivial action of Frobenius automorphisms, (2) implies

229 Similarly, (3) gives Therefore all conjugates of i 1 are generated by the four conjugates with r, s 0, 1, and by all three conjugates of Similarly, one can show that each of the units 1,0, 2,0, 3,0, E4,0, and E5,1 has precisely three conjugates and the product of them (i.e., its absolute norm) equals one. The lemma follows. 0 Since 1/13 acts trivially on equality (10) gives 773 But Lemma 2 shows that -,,l is not a cube in hence C(KB1), which gives q ~ The theorem will be proved, if we show that there exist primes q1,..., q7 satisfying all assumptions made in the first sentence of Notation. But this can be done either by a standard technique using Tchebotarev density theorem (e.g., see Theorem 3.1 in [R]) or just by checking that primes satisfy all these assumptions. References [B] J.-R. BELLIARD, Sous-modules d unités en théorie d Iwasawa, to appear in Publications mathématiques de l Université de Franche-Comté. [GK] R. GOLD, J. KIM, Bases for cyclotomic units. Compositio Math. 71 (1989), 13-27. [KN] R. KU010CERA, J. NEKOVÁ0158, Cyclotomic units in Zp-extensions. J. Algebra 171 (1995), 457-472. [L] G. LETTL, A note on Thaine s circular units. J. Number Theory 35 (1970), 224-226. [R] K. RUBIN, The main conjecture, appendix in S. Lang, Cyclotomic Fields I and II, Springer- Verlag, New York, 1990. [S] W. SINNOTT, On the Stickelberger ideal and the circular units of an abelian field. Invent. Math. 62 (1980), 181-234. [W] L. C. WASHINGTON, Introduction to cyclotomic fields. Springer-Verlag, New York, 1996. Radan KucERA Department of Mathematics Masaryk Univerzity Janackovo nam. 2a 662 95 Brno Czech Republic E-mail : kuceraomath.muni. cz