TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON. Jérôme Racinais. September 15, 2015 PRESSUMETER TEST RESULTS

Similar documents
Finite Element Investigation of the Interaction between a Pile and a Soft Soil focussing on Negative Skin Friction

Analysis of a single pile settlement

Axially Loaded Piles

Engineeringmanuals. Part2

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

Cyclic lateral response of piles in dry sand: Effect of pile slenderness

1 Introduction. Abstract

Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation

Design of foundations in France with the use of Ménard pressuremeter tests (MPM)

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities

Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr.

Clayey sand (SC)

SIDE FRICTION OF DRILLED PILES IN COBBLE LAYERS

Negative Skin Friction on Large Pile Group New Wembley Stadium. Mei Cheong

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

PILE-SUPPORTED RAFT FOUNDATION SYSTEM

HKIE-GD Workshop on Foundation Engineering 7 May Shallow Foundations. Dr Limin Zhang Hong Kong University of Science and Technology

Single Pile Simulation and Analysis Subjected to Lateral Load

Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Monopile design

Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Cavity Expansion Methods in Geomechanics

PLAXIS 3D FOUNDATION Validation Manual. version 1.5

Use of the Light Falling Weight Deflectometer (LFWD) as a site investigation tool for residual soils and weak rock

Analysis of the horizontal bearing capacity of a single pile

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013

Appraisal of Soil Nailing Design

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS

Deep Foundations 2. Load Capacity of a Single Pile

SHEAR STRENGTH OF SOIL

Soil and Rock Strength. Chapter 8 Shear Strength. Steel Strength. Concrete Strength. Dr. Talat Bader May Steel. Concrete.

Cubzac-les-Ponts Experimental Embankments on Soft Clay

ISC 5 SELF-BORING PRESSUREMETER TESTS AT THE NATIONAL FIELD TESTING FACILITY, BALLINA 5 9 SEPT 2016

The new French standard for the application of Eurocode 7 for deep foundations. Roger Frank, Ecole des ponts Sébastien Burlon, IFSTTAR

Numerical and Theoretical Study of Plate Load Test to Define Coefficient of Subgrade Reaction

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

Lecture 7. Pile Analysis

NUMERICAL VERIFICATION OF GEOTECHNICAL STRUCTURE IN UNFAVOURABLE GEOLOGICAL CONDITIONS CASE STUDY

Behavior of Offshore Piles under Monotonic Inclined Pullout Loading

Foundations of High Rise Buildings

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

Lateral Earth Pressure

Monitoring of underground construction

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

Theory of Shear Strength

Seismic Evaluation of Tailing Storage Facility

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS

Jose Brito, Cenor, Portugal

FINITE ELEMENT ANALYSIS OF THE AXIAL CAPACITY OF MICROPILES

Finite Element analysis of Laterally Loaded Piles on Sloping Ground

Minimization Solutions for Vibrations Induced by Underground Train Circulation

GEO E1050 Finite Element Method Mohr-Coulomb and other constitutive models. Wojciech Sołowski

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE

1.8 Unconfined Compression Test

Validation of empirical formulas to derive model parameters for sands

Entrance exam Master Course

Discrete Element Modelling of a Reinforced Concrete Structure

A Pile Pull Out Test

ICDS12 International Conference DURABLE STRUCTURES: from construction to rehabilitation LNEC Lisbon Portugal 31 May - 1 June 2012

2D and 3D Numerical Simulation of Load-Settlement Behaviour of Axially Loaded Pile Foundations

FLAC3D analysis on soil moving through piles

UPLIFT CAPACITY OF PILES SUBJECTED TO INCLINED LOAD IN TWO LAYERED SOIL. Dr. Sunil S. Pusadkar 1, Sachin Ghormode 2 ABSTRACT

Surface Interaction Modeling Engineering Methods. Karl Iagnemma, Ph.D. Massachusetts Institute of Technology

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil

Soil strength. the strength depends on the applied stress. water pressures are required

Cone Penetration Testing in Geotechnical Practice

Verification Manual GT

Spread footing settlement and rotation analysis

Simulation of footings under inclined loads using different constitutive models

Chapter 7: Settlement of Shallow Foundations

CHAPTER 7 ANALYSES OF THE AXIAL LOAD TESTS AT THE ROUTE 351 BRIDGE

Numerical modelling of tension piles

Influence of Soil Models on Numerical Simulation of Geotechnical works in Bangkok subsoil

INTI COLLEGE MALAYSIA

Theory of Shear Strength

EXTENDED ABSTRACT. Combined Pile Raft Foundation

PLAXIS. Material Models Manual

Verification of a Micropile Foundation

Lesson 25. Static Pile Load Testing, O-cell, and Statnamic. Reference Manual Chapter 18

Session 3 Mohr-Coulomb Soil Model & Design (Part 2)

ABSTRACT INTRODUCTION

CONSOLIDATION BEHAVIOR OF PILES UNDER PURE LATERAL LOADINGS

Application of cyclic accumulation models for undrained and partially drained general boundary value problems

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland.

SETTLEMENT EVALUATION OF SHALLOW FOUNDATION SUBJECTED TO VERTICAL LOAD ON THE MULTI-LAYER SOIL

Numerical Modeling of Direct Shear Tests on Sandy Clay

Analysis and measurements of settlement for heavy loaded rigid footing

Analysis of Load-Settlement Relationship for Unpaved Road Reinforced with Geogrid

Talić Z. et al: Geotechnical characteristics... Archives for Technical Sciences 2014, 11(1), 33-39

CPT: Geopractica Contracting (Pty) Ltd Total depth: m, Date:

Finite Element Analysis of TDR Cable-Grout-Soil Mass Interaction During Localized Shearing

Numerical analysis of swelling deformations in tunnelling a case study

Chapter (5) Allowable Bearing Capacity and Settlement

Transcription:

Jérôme Racinais September 15, 215 TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON PRESSUMETER TEST RESULTS

Table of contents 1. Reminder about pressuremeter tests 2. General behaviour of rigid inclusions 3. Rigid inclusions design based on Finite Elements Models 4. Semi-empirical mobilization laws of 5. Calibration of FEM input parameters on s laws 6. Example: Plate Load Tests in Venette, France 7. Conclusion Jérôme RACINAIS 2/23

1. Reminder about pressuremeter tests Determination of E m and p l V V S : initial volume of probe V S + 2V 1 Reloading after hole preparation Pseudo-elastic range Plastic behaviour Pressuremeter curve V 2 (V 1 + V 2 ) /2 E m V 1 Creep curve p 1 p 2 p l p E m = 2 1 + ν V S + V 1 + V 2 2 p 2 p 1 V 2 V 1 Jérôme RACINAIS 3/23

2. General behaviour of rigid inclusions q Q P () Q P () Load transfer platform q S q S Q P (z) Rigid inclusions Soft soil hc N F N N Q max = Q P () + F N F P Dense soil z Q P (L) z Q P (L) Load-bearing layer Q P () + F N = Q max = F P + Q P (L) Jérôme RACINAIS 4/23

3. Rigid inclusions design based on Finite Element Models Jérôme RACINAIS 5/23

3. Rigid inclusions design based on Finite Element Models Use of linear elastic perfectly plastic law with Mohr-Coulomb s failure criterion Main basic parameters Young s modulus E Y Poisson s ratio ν Unit weight γ Effective cohesion c Effective friction angle φ Which values should be input? E Y = E m α? c and φ determined from lab tests? Jérôme RACINAIS 6/23

4. Semi-empirical mobilization laws of Frank and Zhao Behaviour at the inclusion bottom Stress at the inclusion bottom Limit value of end-bearing pressure of an inclusion (determined in this case based on pressuremeter method) q s b s b Vertical displacement of the inclusion bottom k q = 11E M B for fine-grained soils, k q = 4.8E M B for granular soils B : inclusion diameter Jérôme RACINAIS 7/23

4. Semi-empirical mobilization laws of Frank and Zhao Estimation of the limit end-bearing pressure: q b (as per Appendix F of Standard NF P94-262) q b = k p p le p le * : equivalent net limit pressure into the anchoring layer k p : pressuremeter bearing factor 4 Inclusion with soil displacement a = max B ;.5 =.5 m 2 b = min a; h =.5 m p le = 1 D+3a p b + 3a l z dz D b k p 3 2 1 1 2 3 4 5 6 7 8 D ef /B Clay, Silt, Transitional soils Sand, Gravel, Transitional soils Chalk Marl, Marly limestone, Weathered and fragmented tock 3 Inclusion with soil extraction 2 k p D ef = 1 p le D D h D p l z dz h D = 1B (is comprised between 3 m to 4.2 m) 1 1 2 3 4 5 6 7 8 Clay, Silt, Transitional soils Sand, Gravel, Transitional soils Chalk, Marl, Marly limestone Weathered and fragmented tock D ef /B Jérôme RACINAIS 8/23

4. Semi-empirical mobilization laws of Frank and Zhao Behaviour along the interface soil/inclusion Skin friction Limit value of skin friction (determined in this case based on pressuremeter method) s s-i s s-i Relative displacement soil-inclusion k τ = 2E M B for fine-grained soils, k τ =.8E M B for granular soils B : Inclusion diameter Jérôme RACINAIS 9/23

q s [kpa] q s [kpa] 4. Semi-empirical mobilization laws of Frank and Zhao Estimation of the limit skin friction: q s (as per Appendix F of Standard NF P94-262) q s = min α pieu sol f sol p l ; q s;max α pieu-sol : dimensionless parameter depending on pile type and soil type f sol : function depending on soil type and p l* value 25 Inclusion with soil displacement 25 Inclusion with soil extraction 2 2 15 1 5 1 2 3 4 5 6 7 8 p l * [MPa] Clay, Silt, Transitional soils Transitional soils predominantly sandy or gravelly Sand, Gravel Chalk Marl, Marly limestone 15 1 5 1 2 3 4 5 6 7 8 p l * [MPa] Clay, Silt, Transitional soils Transitional soils predominantly sandy or gravelly Sand, Gravel Chalk Marl, Marly limestone Jérôme RACINAIS 1/23

Load at the inclusion bottom Load at the inclusion bottom Load at the inclusion bottom Skin friction Skin friction Skin friction 5. Calibration of FEM input parameters on s laws Skin friction (along the inclusion in surrounding soil) increase increase Relative displacement soil-inclusion Relative displacement soil-inclusion Relative displacement soil-inclusion Effective cohesion c Friction angle φ Young s modulus E Y Load at the inclusion bottom (in the anchoring layer) vs Plaxis vs Plaxis vs Plaxis increase increase increase Vertical displacement of the inclusion bottom Vertical displacement of the inclusion bottom Vertical displacement of the inclusion bottom Effective cohesion c Friction angle φ Young s modulus E Y Jérôme RACINAIS 11/23

5. Calibration of FEM input parameters on s laws E Y = E m /α c = q s (q s determined based on pressuremeter method) φ E Y = 1.5 to 6 x E m /α c = q b /9 (q b determined based on pressuremeter method), API (1991) φ Jérôme RACINAIS 12/23

6. Example: Plate Load Tests in Venette, France Pressuremeter tests E m Pl α γ c φ MPa MPa - kn/m 3 kpa 1 m Existing fill 15.96 1/2 2 11 25 4 m Soft silts 5.5.43 1/2 2 6 31 4.5 m Sands and gravels 35 2.5 1/3 2 43 From lab tests Jérôme RACINAIS 13/23

6. Example: Plate Load Tests in Venette, France Presentation of the finite element model initial parameters Skin friction Inclusion bottom behaviour γ c φ E Y R inter [kn/m 3 ] [kpa] [ ] [MPa] [-] Fill 2 11 25 = E M /α = 3 1 Silts 2 6 31 = E M /α = 11 1 Interface Sands 16.5 43 = E M /α = 15 1 Inclusion 32 mm diameter 5 cm anchoring length Existing fill q s = 8 kpa Soft silts q s = 6 kpa γ c φ E Y [kn/m 3 ] [kpa] [ ] [MPa] Sands 16.5 43 = E M /α = 15 Sands and gravels q s = 17 kpa q b = 5.8 MPa Based on pressuremeter method Jérôme RACINAIS 14/23

Load at the inclusion bottom [kn] 6. Example: Plate Load Tests in Venette, France Load test curve with initial parameters Comparison with Frank and Zhao s mobilization laws 5 45 4 35 3 25 2 15 1 5 vs Plaxis Plaxis - initial parameters 1 2 3 4 5 6 7 Vertical displacement of the inclusion bottom [mm] At inclusion bottom Jérôme RACINAIS 15/23

Load at the inclusion bottom [kn] Skin friction [kpa] 6. Example: Plate Load Tests in Venette, France Load test curve with initial parameters Comparison with Frank and Zhao s mobilization laws 5 45 4 35 3 25 2 15 1 5 vs Plaxis Plaxis - initial parameters 1 2 3 4 5 6 7 Vertical displacement of the inclusion bottom [mm] At inclusion bottom 1 9 8 7 6 5 4 3 2 1 vs Plaxis (example for silt) Plaxis - initial parameters - 1.5 m deep Plaxis - initial parameters - 3 m deep 2 4 6 8 1 12 14 Relative displacement soil-inclusion [mm] Along interface soil/inclusion Jérôme RACINAIS 16/23

Cumulated settlement [mm] Load at the inclusion bottom [kn] Skin friction [kpa] 6. Example: Plate Load Tests in Venette, France Load test curve with initial parameters Comparison with Frank and Zhao s mobilization laws 5 45 4 35 3 25 2 15 1 5 vs Plaxis Plaxis - initial parameters 1 2 3 4 5 6 7 Vertical displacement of the inclusion bottom [mm] At inclusion bottom adjust modelling parameters to calibrate the Plaxis curve on Frank & Zhao s semi-empirical laws 1 9 8 7 6 5 4 3 2 1-2 -4-6 -8-1 -12-14 -16-18 -2-22 vs Plaxis (example for silt) Plaxis - initial parameters - 1.5 m deep Plaxis - initial parameters - 3 m deep 2 4 6 8 1 12 14 Relative displacement soil-inclusion [mm] Along interface soil/inclusion Curve Load / deformation Plaxis - initial parameters 5 1 15 2 25 3 35 4 Load [kn] At inclusion head Jérôme RACINAIS 17/23

6. Example: Plate Load Tests in Venette, France Calibrated parameters Skin friction γ c φ E Y R inter [kn/m 3 ] [kpa] [ ] [MPa] [-] Fill 2 8 3 1 Silts 2 6 11 1 Interface Sands 16.5 17 157.5 1 Fill Silts Inclusion bottom behaviour γ c φ E Y [kn/m 3 ] [kpa] [ ] [MPa] Sands 16.5 65 1 x E M /α, 1.5 x E M /α, 3 x E M /α? Sands Jérôme RACINAIS 18/23

Load at the inclusion bottom [kn] 6. Example: Plate Load Tests in Venette, France Load test curve with calibrated parameters Comparison with Frank and Zhao s mobilization laws 5 45 4 35 3 25 2 15 1 5 vs Plaxis Plaxis - initial parameters Plaxis - calibrated parameters 1xEm/α Plaxis Plaxis - - initial calibrated parameters parameters 1.5xEm/α Plaxis --calibrated parameters 1.5xEm/α 3xEm/α 1 2 3 4 5 6 7 Vertical displacement of the inclusion bottom [mm] At inclusion bottom γ c φ E Y [kn/m 3 ] [kpa] [ ] [MPa] Sands 16.5 65 = 1.5 x E M /α = 157.5 Jérôme RACINAIS 19/23

Load at the inclusion bottom [kn] Skin friction [kpa] 6. Example: Plate Load Tests in Venette, France Load test curve with calibrated parameters Comparison with Frank and Zhao s mobilization laws vs Plaxis 5 45 4 35 3 25 2 15 Plaxis - initial parameters Plaxis - calibrated parameters 1xEm/α 1 Plaxis Plaxis - - initial calibrated parameters parameters 1.5xEm/α 5 Plaxis --calibrated parameters 1.5xEm/α 3xEm/α 1 2 3 4 5 6 7 Vertical displacement of the inclusion bottom [mm] At inclusion bottom 1 9 8 7 6 5 4 3 2 1 vs Plaxis (example for silt) Plaxis - initial parameters - 1.5 m deep Plaxis - initial parameters - 3 m deep Plaxis - calibrated parameters 2 4 6 8 1 12 14 Relative displacement soil-inclusion [mm] Along interface soil/inclusion γ c φ E Y [kn/m 3 ] [kpa] [ ] [MPa] Sands 16.5 65 = 1.5 x E M /α = 157.5 Jérôme RACINAIS 2/23

Settlement (mm) Load at the inclusion bottom [kn] Skin friction [kpa] 6. Example: Plate Load Tests in Venette, France Load test curve with calibrated parameters Comparison with Frank and Zhao s mobilization laws vs Plaxis 5 45 4 35 3 25 2 15 Plaxis - initial parameters Plaxis - calibrated parameters 1xEm/α 1 Plaxis Plaxis - - initial calibrated parameters parameters 1.5xEm/α 5 Plaxis --calibrated parameters 1.5xEm/α 3xEm/α 1 2 3 4 5 6 7 Vertical displacement of the inclusion bottom [mm] At inclusion bottom γ c φ E Y [kn/m 3 ] [kpa] [ ] [MPa] Sands 16.5 65 = 1.5 x E M /α = 157.5 1 9 8 7 6 5 4 3 2 1-2 -4-6 -8-1 -12-14 -16-18 -2-22 vs Plaxis (example for silt) Plaxis - initial parameters - 1.5 m deep Plaxis - initial parameters - 3 m deep Plaxis - calibrated parameters 2 4 6 8 1 12 14 Relative displacement soil-inclusion [mm] Along interface soil/inclusion Curve load / deformation Plaxis - initial parameters Plaxis - calibrated parameters 1 2 3 4 5 6 Load (kn) At inclusion head Jérôme RACINAIS 21/23

Settlement (mm) 6. Example: Plate Load Tests in Venette, France Load test curve with calibrated parameters Comparison with insitu load test Curve load / deformation -2-4 -6-8 -1-12 -14-16 -18-2 -22 Plaxis - initial parameters Plaxis - calibrated parameters In-situ load test 1 2 3 4 5 6 7 8 Load at inclusion head (kn) Jérôme RACINAIS 22/23

7. Conclusion Classical determination of the FE input parameters is often very conservative The calibration of the input parameters on the empirical curves from allows to better simulate the rigid inclusion behaviour The curves require the use of the pressuremeter test parameters E m et p l Three modelling parameters need to be calibrated: Effective cohesion Effective friction angle Young s modulus Thank you for your attention Jérôme RACINAIS 23/23