Gauge-Higgs Unification and the LHC

Similar documents
Collider signatures of gauge-higgs unification

Introduction : Extra dimensions. Y. Hosotani, PPP2011, YITP, 8 March 2011, - 2

Y. Hosotani, SI2010, 15 August 2010, - 2

Theories with Compact Extra Dimensions

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006

Flavor, Minimality and Naturalness in Composite Higgs Models

Composite Higgs/ Extra Dimensions

Light KK modes in Custodially Symmetric Randall-Sundrum

Gauge-Higgs Dark Matter

The Higgs discovery - a portal to new physics

Finite Gluon Fusion Amplitude in the Gauge-Higgs Unification. Nobuhito Maru. (Chuo University) Based on N.M., MPL A (2008)

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland)

Heavy Electroweak Resonances at the LHC

Top quark effects in composite vector pair production at the LHC

Composite Higgs Overview

Boundary Conditions in AdS Life Without a Higgs

Elementary/Composite Mixing in Randall-Sundrum Models

Composite Higgs and Flavor

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland)

A Domino Theory of Flavor

Warped Penguins. Based on arxiv: In collaboration with Csaba Csáki, Yuval Grossman, Philip Tanedo. LEPP Particle Theory Seminar

Compositeness at ILC250?

SUPERSYMETRY FOR ASTROPHYSICISTS

The Hierarchy Problem on Neutral

Accidental SUSY at the LHC

Introduction to Supersymmetry

Higgs Signals and Implications for MSSM

The Physics of Heavy Z-prime Gauge Bosons

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Crosschecks for Unification

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

Scalar Heavy WIMPs from Composite Dynamics

FLAVOUR IN WARPED EXTRA DIMENSIONS

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

U(1) Gauge Extensions of the Standard Model

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

The search for the (SM) Higgs Boson

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Lecture 18 - Beyond the Standard Model

Effects on Higgs Boson Properties From Radion Mixing

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Flavor violating Z from

Lepton flavour violation in RS models

125 GeV Higgs Boson and Gauge Higgs Unification

Composite Higgs Phenomenology at the LHC and Future Colliders

Light generations partners at the LHC

Introduction to (Large) Extra Dimensions

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Gauge-Higgs Unification on Flat Space Revised

Composite Higgs, Quarks and Leptons, a contemporary view

Supersymmetry Breaking

INTRODUCTION TO EXTRA DIMENSIONS

Higgs Property Measurement with ATLAS

Exotic W + W Z Signals at the LHC

Beyond the Higgs. new ideas on electroweak symmetry breaking

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

New Physics at the TeV Scale and Beyond Summary

Composite gluino at the LHC

TeV Scale Seesaw with Loop Induced

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Koji TSUMURA (NTU à Nagoya U.)

Naturalness & Compositeness Riccardo Rattazzi, EPFL

Light Pseudoscalar Higgs boson in NMSSM

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

IX. Electroweak unification

Introduction to the Beyond the Standard Model session

The discrete beauty of local GUTs

Mono Vector-Quark Production at the LHC

From Higgsless to Composite Higgs Models

Potential Discoveries at the Large Hadron Collider. Chris Quigg

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

The Higgs Mechanism and the Higgs Particle

Modification of Higgs Couplings in Minimal Composite Models

E 6 inspired composite Higgs model and 750 GeV diphoton excess

Universal Extra-Dimension at LHC

The Yang and Yin of Neutrinos

Yuhsin Tsai Cornell/Fermilab Warped Penguins 1/38

Warped Models in String Theory

Constraining minimal U(1) B L model from dark matter observations

Physics Beyond the Standard Model at the LHC

DARK MATTER CANDIDATES IN COMPOSITE HIGGS MODELS

New Physics beyond the Standard Model: from the Earth to the Sky

Beyond the Standard Model

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Directions for BSM physics from Asymptotic Safety

From Higgsless to Composite Higgs Models

Physics at the ILC. Ariane Frey, MPI München 38. Herbstschule Maria Laach Ariane Frey, MPI München

3.5 kev X-ray line and Supersymmetry

Magnetic moment (g 2) µ and new physics

Nobuhito Maru (Kobe)

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Phenomenology of 5d supersymmetry

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

Light flavon signals at electron-photon colliders

Extra Dimensional Signatures at CLIC

Transcription:

Gauge-Higgs Unification and the LHC

If the Higgs boson is 124 or 126 or? GeV with SM couplings, Explain SM Higgs. with non-sm couplings, is not seen at LHC, Higgs is stable. Higgs does not exist. 2

If the Higgs boson is 124 or 126 or? GeV with SM couplings, with non-sm couplings, is not seen at LHC, Higgs is stable. gauge-higgs Higgs does not exist. 3

Discovery of un-discovery of the Higgs boson 4

It s no surprise in gauge-higgs unification. 5

Gauge-Higgs Unification A M 4-dim. components A µ 4D gauge fields γ, W, Z extra-dim. component A y 4D Higgs fields H Aharonov-Bohm phase Symmetry breaking Hosotani mechanism 6

e iˆθ H (x) P exp ig C ˆθ H (x) =θ H + H(x) f H dya y θ H = Higgs f H θ H θ H +2π differs from SM. 7

SO(5) U(1) ds 2 = e 2k y dx µ dx µ + dy 2 0 y L = πr Agashe, Contino, Pomarol, 2005 YH, Oda, Ohnuma, Sakamura 2008 YH, Noda, Uekusa 2009 Planck brane brane fermions brane scalar Λ = 6 k 2 SO(5) U(1) g A g B quarks, leptons TeV brane y = 0 y = π R Aµ A y Aµ A y Orbifold BC (x, y) = P 0 Aµ A y (x, πr y) = P 1 Aµ A y (x, y)p 0 (x, πr + y)p 1 8

1 P 0 = P 1 = 1 1 1 +1 SO(5) SO(4) SU(2) L SU(2) R W Z γ A µ Higgs A y φ 1 φ 2 φ 3 φ 4 brane scalar SO(4) U(1) SU(2) L U(1) = SU(2) L U(1) Y θ H =0 U(1) EM 9

parameters inputs RS: k, z L = e kl g A, g B fermions α w, sin 2 θ W m Z quark/lepton masses One free parameter z L 10

Planck scale input m KK TeV scale output Weak scale m W input m KK = πke kl π kl m W kl = 30 40 for z L = 10 13 10 17 Symmetry breaking 11

in SM f H sin ˆθ H v + H L eff 1 2 2 gf H sin ˆθ H W µ W µ + 1 2 cos 2 θ W Z µ Z µ y f f H sin ˆθ H ψ f ψ f ˆθ H = θ H + H f H f H = 2 kl m KK πg WWH ZZH Yukawa = SM cos θ H 12

YH, Oda, Ohnuma, Sakamura 2008 YH, Noda, Uekusa 2009 Planck brane SO(5) U(1) TeV brane ˆΦ (0, 1 2 ) ˆΦ = 0 Anomaly cancelation ˆT R ˆB R ÛR ˆD R ˆX R ŶR ( 1 2, 0) ˆL 2XR ˆL 2YR ˆL 3XR ˆL 3YR ˆL 1XR ˆL 1YR TL B L t L b t L R 2 3 vector rep ν τ τ L L 1X L L 1Y τ L UL D L X L Y 1 b L R 1 3 ( 1 2, 1 ) (0, 0) 2 R L Ψ(x, y) =P 0 γ 5 Ψ(x, y) Ψ(x, πr y) =P 1 γ 5 Ψ(x, πr + y) L 2X L L 2Y L L 3X L L 3Y L ντ R 0 13

V eff (θ H )/m 4 KK 0.5-0.5-1.0-1.5-2.0-2.5 U gauge 0.5 1.0 1.5 2.0 total fermions z L = 10 15 θ /π H θ H = π 2 SU(2) L U(1) U(1) EM m H = 135 GeV (z L = 10 15 ) 14

θ H = π 2 YH, Ko, Tanaka, 2009 YH, Tanaka, Uekusa, 2010 θ H + H f H = π 2 + H f H π 2 H f H H : all other SM particles : + 15

SO(5) : SO(4) SU(2) L SU(2) R SO(5)/SO(4) { T α } = { T a L, T a R, T â, Tˆ4 } P H : SU(2) L SU(2) R T ˆ4 T ˆ4 Agashe, Contino, Da Rold, Pomarol 2006 T parameter Zb b 16

Where is SU(2) x U(1) L in SO(5) x U(1)? Y SO(5) U(1) X SO(4) U(1) X SU(2) L SU(2) R U(1) X ˆΦ = 0 SU(2) L U(1) = SU(2) L U(1) Y θ H =0 U(1) EM 17

SO(5) { T a L, Ta R, ˆT a, ˆT 4 } { I a L, Ia R, Îa, Î 4 } SU(2) L SU(2) R SU(2) L SU(2) R I a L I a R = 1 ± cos θ H 2 T a L + 1 cos θ H 2 T a R sin θ H 2 ˆT a Note: T a L + T a R = Ia L + Ia R : custodial SU(2) V W ± Z γ couples to I 1 c φ Q X + s φ I 3 L ± ii2 L R, s φ = t W c W I 3 L s W Q Y = Q EM = I 3 L + I3 R + Q X = T 3 L + T 3 R + Q X Higgs Î 4 = ˆT 4 YH, Sakamura 2007 Contino, Marzocca, Pappadopulo, Rattazzi 2011 Hatanaka, YH, Shimotani 18

W ± µ Z µ γ µ Z µ W 1 µ, W2 µ W 3 µ Bµ X Wµ 3 SU(2) L U(1) X SU(2) R Furthermore W (n) µ (x) C(z; λ (n) W )I+ L (θ H) sin θ H 2 [Ŝ(z; λ (n) W ) C(z; λ(n) W )] ˆT + All KK modes participate. 19

Collider signatures θ H = 1 2 π ν, ν background Cheung, Song, 1004.2783, Alves, 1008.0016 YH, Tanaka, Uekusa, 1103.6076 20

e + e Z,q q No. data SM z L : 10 15 z L : 10 10 z L : 10 5 sin 2 θ W 0.2312 0.2309 0.2303 0.2284 χ 2 (AF B) 6 10.8 6.3 6.4 7.1 χ 2 (Z decay) 8 13.6 16.5 37.7 184.5 z L 10 15 YH, Tanaka, Uekusa, 2011 21

KK Z (1) & γ (1) Z (1) 10 15 γ (1) 10 15 z L m Γ 10 5 653 104 1130 422 in GeV z L m Γ 10 5 678 446 1144 1959 in GeV 10 strong couplings at TeV 22

q q Z (1), γ (1) e + e σ (pb/20gev)!"#!$# z L = 10 5 z L = 10 10 z L = 10 5 z L = 10 10 σ (pb/20gev) z L = 10 15!%#!&# z L = 10 15 SM '( Z (1) z L m Γ 10 5 653 104 m ee (GeV) 10 15 1130 422 in GeV m ee (GeV) γ (1) z L > 10 15 23

Ω H h 2 Relic abundance YH, Ko, Tanaka, 2009 0.2 semi-analytic micromegas WMAP H h 2 0.1 0 20 30 40 50 60 70 80 90 100 Higgs mass (GeV) m H m H = 70 75 GeV z L 10 15 10 5 10 10 m H 72 GeV 108 135 24

z L > 10 15 m H = 135 GeV m H = 70 75 GeV z L 10 5 compatible with m H = 70 75 GeV z l > 10 15? Yes Hatanaka, YH, 2011 m H =0 70 75 GeV 25

V eff = ± 1 2 d 4 p (2π) 4 n ln p 2 + m n (θ H ) 2 0.5 U - 0.5-1.0-1.5-2.0-2.5 gauge 0.5 1.0 1.5 2.0 total fermions θ /π H non-susy W, Z, Higgs mn t mn W, Z, Higgs m n = m 2 n + Λ2 gh m n = t m 2 n + Λ2 stop 26

1000 800 m h = 120 GeV m h 120GeV z L = 10 17 z L = 10 15 Λ stop = 450 475 GeV Λ gh > 1 TeV stopgev 600 400 m h = m h 75GeV GeV m h = 70 GeV m h 70GeV Phase transition stop mass 480-505 GeV 200 for m h = 70 75 GeV No EWSB 0 0 500 1000 1500 2000 2500 gh GeV 800-900 GeV for m h 120 GeV 27

If the Higgs boson is 124 or 126 or? GeV with non-sm couplings, or is not seen at LHC (as Higgs is stable), gauge-higgs (extra dimensions). 28