The Research on Syntactic Features in Semantic Role Labeling

Similar documents
Semantic Role Labeling via Tree Kernel Joint Inference

Fast Computing Grammar-driven Convolution Tree Kernel for Semantic Role Labeling

Introduction to the CoNLL-2004 Shared Task: Semantic Role Labeling

The SUBTLE NL Parsing Pipeline: A Complete Parser for English Mitch Marcus University of Pennsylvania

Penn Treebank Parsing. Advanced Topics in Language Processing Stephen Clark

Probabilistic Context-free Grammars

Driving Semantic Parsing from the World s Response

Capturing Argument Relationships for Chinese Semantic Role Labeling

Bringing machine learning & compositional semantics together: central concepts

Learning and Inference over Constrained Output

A Supertag-Context Model for Weakly-Supervised CCG Parser Learning

Probabilistic Context Free Grammars. Many slides from Michael Collins

Parsing. Based on presentations from Chris Manning s course on Statistical Parsing (Stanford)

arxiv: v2 [cs.cl] 20 Apr 2017

S NP VP 0.9 S VP 0.1 VP V NP 0.5 VP V 0.1 VP V PP 0.1 NP NP NP 0.1 NP NP PP 0.2 NP N 0.7 PP P NP 1.0 VP NP PP 1.0. N people 0.

Margin-based Decomposed Amortized Inference

Terry Gaasterland Scripps Institution of Oceanography University of California San Diego, La Jolla, CA,

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science

10/17/04. Today s Main Points

TALP at GeoQuery 2007: Linguistic and Geographical Analysis for Query Parsing

A Context-Free Grammar

Probabilistic Context-Free Grammars. Michael Collins, Columbia University

Semantic Role Labeling and Constrained Conditional Models

Probabilistic Context Free Grammars. Many slides from Michael Collins and Chris Manning

Natural Language Processing

Features of Statistical Parsers

A Deterministic Word Dependency Analyzer Enhanced With Preference Learning

Natural Language Processing 1. lecture 7: constituent parsing. Ivan Titov. Institute for Logic, Language and Computation

LECTURER: BURCU CAN Spring

Machine Learning for natural language processing

Chunking with Support Vector Machines

From Language towards. Formal Spatial Calculi

Multiword Expression Identification with Tree Substitution Grammars

Deep Learning for NLP

11/3/15. Deep Learning for NLP. Deep Learning and its Architectures. What is Deep Learning? Advantages of Deep Learning (Part 1)

MACHINE LEARNING. Kernel Methods. Alessandro Moschitti

Maschinelle Sprachverarbeitung

Maschinelle Sprachverarbeitung

Representing structured relational data in Euclidean vector spaces. Tony Plate

Multilevel Coarse-to-Fine PCFG Parsing

Lecture 5: UDOP, Dependency Grammars

Statistical Methods for NLP

Recap: Lexicalized PCFGs (Fall 2007): Lecture 5 Parsing and Syntax III. Recap: Charniak s Model. Recap: Adding Head Words/Tags to Trees

Advanced Natural Language Processing Syntactic Parsing

Random Generation of Nondeterministic Tree Automata

Prenominal Modifier Ordering via MSA. Alignment

Latent Variable Models in NLP

Lecture 13: Structured Prediction

Spatial Role Labeling CS365 Course Project

Introduction to Semantic Parsing with CCG

Quasi-Second-Order Parsing for 1-Endpoint-Crossing, Pagenumber-2 Graphs

Computational Linguistics

Processing/Speech, NLP and the Web

CS 545 Lecture XVI: Parsing

Computational Linguistics. Acknowledgements. Phrase-Structure Trees. Dependency-based Parsing

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Hidden Markov Models

a) b) (Natural Language Processing; NLP) (Deep Learning) Bag of words White House RGB [1] IBM

Improving Sequence-to-Sequence Constituency Parsing

Alessandro Mazzei MASTER DI SCIENZE COGNITIVE GENOVA 2005

Multi-dimensional Dependency Grammar as Multigraph Description

Structured Prediction Models via the Matrix-Tree Theorem

c(a) = X c(a! Ø) (13.1) c(a! Ø) ˆP(A! Ø A) = c(a)

Statistical Methods for NLP

Bayes Risk Minimization in Natural Language Parsing

Personal Project: Shift-Reduce Dependency Parsing

Proposition Knowledge Graphs. Gabriel Stanovsky Omer Levy Ido Dagan Bar-Ilan University Israel

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015

High-Order Low-Rank Tensors for Semantic Role Labeling

Spatial Role Labeling: Towards Extraction of Spatial Relations from Natural Language

Extraction of Opposite Sentiments in Classified Free Format Text Reviews

Multi-Component Word Sense Disambiguation

Spectral Unsupervised Parsing with Additive Tree Metrics

Marrying Dynamic Programming with Recurrent Neural Networks

The Noisy Channel Model and Markov Models

Jointly Extracting Event Triggers and Arguments by Dependency-Bridge RNN and Tensor-Based Argument Interaction

AN ABSTRACT OF THE DISSERTATION OF

Support Vector Machines

Intelligent Systems (AI-2)

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Hidden Markov Models

Classification & Information Theory Lecture #8

Intelligent Systems (AI-2)

Information Extraction from Text

Parsing with Context-Free Grammars

This kind of reordering is beyond the power of finite transducers, but a synchronous CFG can do this.

Boosting Applied to Tagging and PP Attachment

NLP Programming Tutorial 11 - The Structured Perceptron

arxiv: v2 [cs.cl] 20 Aug 2016

CS460/626 : Natural Language

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Language Models & Hidden Markov Models

Tuning as Linear Regression

A proof theoretical account of polarity items and monotonic inference.

Latent Dirichlet Allocation Introduction/Overview

Department of Computer Science and Engineering Indian Institute of Technology, Kanpur. Spatial Role Labeling

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom.

Deep Learning for NLP Part 2

Quasi-Synchronous Phrase Dependency Grammars for Machine Translation. lti

Deep Learning for NLP

An Introduction to String Re-Writing Kernel

Lab 12: Structured Prediction

CS460/626 : Natural Language

Transcription:

23 6 2009 11 J OU RNAL OF CH IN ESE IN FORMA TION PROCESSIN G Vol. 23, No. 6 Nov., 2009 : 100320077 (2009) 0620011208,,,, (, 215006) :,,,( NULL ),,,; CoNLL22005 Shared Task WSJ 77. 54 %78. 75 %F1, : ;;;; ; : TP391 : A The Research on Syntactic Features in Semantic Role Labeling L I J unhui, WAN G Hongling, ZHOU Guodong, ZHU Qiaoming, QIAN Peide ( School of Computer Science & Technology, Soochow University, Suzhou, Jiangsu 215006, China) Abstract : A feature2based semantic role labeling system operated on signal syntactic parse is constructed. The sys2 tem is divided into three sequential tasks : (1) filtering out constituent s that represent no semantic argument s with high probabilities, (2) classifying constituent s of candidate semantic argument s into the specific categories (inclu2 ding NULL class), and (3) dealing with overlap argument s and constituent s all labeled as core2argument s in the post2processing step. Besides combining and optimizing the existing features presented in other work, the paper ex2 tract s new features according to knowledge of grammar, pattern and collocation. The experiment s show the effec2 tiveness and robustness of the new extracted features, with which the finally SRL system achieves F1 value 77. 54 % and 78. 75 % on the development and WSJ test set respectively. As far as we know, it is the best result based on sin2 gle syntactic parsers on the CoNLL22005 Shared Task. Key words : artificial intelligence ; natural language processing ; semantic role labeling ; grammar2driven feature ; pat2 tern feature ; collocation feature 1,,, ( Argent ) ( Patient ) ( In2 (Semantic Role Labeling, SRL),, CoNLL 2004 [1 ] 2005 [ 2 ] SRL,SRL, strument),,(locative) : 2008211211 : 2009201215 : 863 (2006AA01Z147) ; (60673041) ; (08 KJD520010) : (1983 ),,, ; (1975 ),,, ; (1967 ),,,,

12 2009 ( Temporal) (Manner) ( Cause) 1 PropBank,, Arg0 ; Arg1 ;ArgM2LOC, 1 YaoMing plays basketball in NBA plays CoNLL,,SRL, ;, ( Argument Identification), (Argument Classification),, ( ) (),,, ;,,,;, CoN2 LL2005,, WSJ F1 77. 54 %78. 75 %, : ; Baseline ;, ;;,, [ 3 ], 7,( Constit uent Type) ( Subcategorization) ( Parse Tree Pat h) ( Constit uent Posi2 tion) ( Predicate Voice ) (Constituent Head Word) ( Predicate) 7 SRL [4 ],7,, ( Head POS) PP ( First Word in Constit2 uent) [ 5 ]7, 5,, [ 6 ] PA K ( Predicate/ Argument Structure Kernel) [ 7 ] PA K, ( Pat h Kernel) (Constituent Struct ure Kernel), [8 ],, buy a car buy a red car high degree higher de2 gree,,,,, ;,,,,,, 3 Baseline 2 3. 1,: 1)

6 : 13, (NULL vs. NON2NULL),( Null ) ( = 0. 9), ;2), NULL ;3),,,, P (NULL ) >, ; (NULL ),, ;,, SVMLight,one vs. ot hers ( NULL ) (4 ) + + + + + + + 2 ( CBaseFeature) (15 ) 7 [4, 12214 ] [4, 12214 ] [4, 13214 ] 3. 2 [4, 13214 ], 0,, [12 ] N P S V P VB ( [14 ], ) N P,;N P, N P S V P VB N P, N P N P,,, SRL, 1 2,Baseline 1 ( IBaseFeature), [4, 12214 ] [425, 12214], Collins (6 ) V P, V P2 > VBZ_NP_PP,,, 1, N P ( Yaoming) play N P S V P VBD N P, SBAR [14 ] (12 ) + + + + + + + + + + + + + + + + 3. 3,, C1 C2 ( 1 N P (NBA) PP (in NBA) ),,,,, NULL The OpenNL P Maximum Entropy Package. http :/ / max2 ent. sourceforge. net/, PP PP +,PP + in ; + PP + NBA

14 2009,, SRL,,, : C1 C2, C1 A B,C2 A C p (A C1) p (C C2) > p (B C1) p (A C2) C1 A, C2 C,,C1 B,C2 A S N P + V P, S A,B C,,SBAR (SBAR (t hat) SBAR ( since) ) ;c. A A CC A, (A, CC,and, or ), A ; d. S 2 S,2 (a), ;2 (b), 2 (c), S, S S, : S N P +,S ( TO + ) V P +,S 4 SRL Baseline, : 1) SRL,,,,;,, ;2),, ;,Baseline, 4. 1 VBN ;b. SBAR SBA R,, 2 S 2) V P, 1 N P (basketball), ( 1),, 3 (a), buying Big in2 vestment banks (ref used, step support) (by) N P (Big in2, vestment banks) buy, N P S V P S V P V P S V P V P PP, S V P VB G, 1) N P buy, : a. ref used step support buying,,, N P (Big, 1 YaoMing invest ment banks) ;, V P (buy2 played basket ball in NBA,play ing... ) V P (ref used to.. ) ( 3 (b), ),N P buy VB VBZ VBD VBP G VBN (,,ref use step have ), support,,

6 : 15,, 3 N P(Big investment banks) VB G(buying) 4. 2, ( Pattern), Sbody benefit Sbody St hing,sbody benefit St hing f rom Sbody/ St hing benefit,,, ( A0, A1 ) open N P1 open N P2 open N P3, open, N P1,the store finally opened ;N P2 N P3,I opened t he box, go come take,,,,,, 4, 4 (a) N P ( I) 2 = N P V (A) N P,,,, go t hrough come up with take place take over 4 ( b) N P ( The, 4,,( Collocation), (4 ), : ( ) 4 (a) 4 NP(I) 1 = NP V (A) NP, 1,(A),V event) 3 = N P V ( A ) place 5 5. 1 CoNLL2005

16 2009, PropBank Brown : PropBank [9 ] Section02221,39 832 ; Section24,1 346 ;Section23,2 416 ;, Brown 426,, CoNLL2005 [ 10211 ], 10. 08 % 11. 89 % [ 14 ] Char2 niak Collins, Charniak, srl2eva. pl, F1, 3, 100, SVMLight c = 0. 131 6 e = 0. 01 m = 100 000, 5. 2, 3,P ( NULL ) >(, 0. 9),; 3 CoNLL 2005 Shared Task TestWSJ (= 0. 9) Precision Recall F1 IBaseFeature 77. 75 86. 02 81. 68 IBaseFeature + 76. 66 92. 75 83. 94 IBaseFeature + 74. 14 92. 20 82. 19 IBaseFeature + Both 76. 27 92. 75 83. 76 3,, S SBAR,,;,,, 3,,, ( Precision 76. 66 %76. 27 %), ( IBaseFeat ure + ) : 1), ;2) IBaseFeat ure, NULL,( IBaseFeature + ) 5. 3 SRL,, P (NULL) >, ; ( NULL ) 4 CoNLL 2005 Shared Task Test WSJ, 4 CoNLL 2005 Shared Task TestWSJ SRL,= 0. 9, IBaseFeature Precision Recall F1 CBaseFeature 80. 67 75. 21 77. 85 CBaseFeature + 80. 99 75. 68 78. 24 CBaseFeature + 80. 64 75. 53 78. 00 CBaseFeature + 80. 86 75. 46 78. 07 CBaseFeature + 80. 68 75. 36 77. 93 CBaseFeature + 80. 98 75. 50 78. 14 5 CoNLL 2005 Shared Task Test WSJ, Baseline,, 5 : 1), S SBAR,, ( F1 2. 3 %), ( F1 0. 23 %) Bot h +,

6 : 17 5 CoNLL 2005 Shared Task TestWSJ SRL (= 0. 9) IBaseFeature IBaseFeature + CBaseFeature CBaseFeature CBaseFeature + CBaseFeature + CBaseFeature + Both Precision 80. 67 80. 56 80. 83 80. 96 81. 17 Recall 75. 21 75. 88 76. 07 76. 32 76. 47 F1 77. 85 78. 15 78. 38 78. 57 78. 75 2),,F1 0. 42 % 3), SRL, Baseline77. 85 % 78. 75 % 5. 4 SRL Punyakanoc [ 12 ] CoNLL 2005 Shared Task,,, (Charniak),Surdeanu [13 ] [14 ] Pradhan,,,, ( Charniak), 6 Baseline Baseline + Bot h 6 : 1) Baseline [425,14 ],, [13214 ] 2) SRL, ( WSJ + Brown) F1 1. 22 0. 94 3) Brown SRL WSJ, F1 11. 13 %, :, SRL ;, SRL, 4) CoNLL 2005 Shared Task, Brown,, 6, ;, ; Overlap, Baseline ;, CoNLL 2005 Shared Task,, 6 SRL Development Test WSJ Test Brown Test WSJ + Brown P R F1 P R F1 P R F1 P R F1 Punyakanoc et al., 2005 80. 05 74. 83 77. 35 82. 28 76. 78 79. 44 73. 38 62. 93 67. 75 81. 18 74. 92 77. 92 Surdeanu et al., 2005 79. 14 71. 57 75. 17 80. 32 72. 95 76. 46 72. 41 59. 67 65. 42 79. 35 71. 17 75. 04, 2007 79. 65 71. 34 75. 49 81. 30 73. 37 77. 13 71. 65 60. 36 65. 52 80. 02 71. 65 75. 60 Baseline 79. 28 73. 58 76. 32 80. 67 75. 21 77. 85 70. 44 62. 93 66. 47 79. 35 73. 57 76. 35 Baseline + Both 80. 13 75. 11 77. 54 81. 17 76. 47 78. 75 71. 40 64. 22 67. 62 79. 91 74. 83 77. 29

18 2009,, The store opened last week, open N P open N P, The store A0,,,, (), : 1),CoNLL 2005 Shared Task 90 750,3 101, 10 20 % ; 1 795, 26 % ;2),, ;,, anes2 t hetic () antibiotic (),,, : [1 ] Carreras X. and M rquez L. Introduction to the CoN2 LL22004 Shared Task : Semantic Role Labeling [ C ]/ / Proceedings of CoNLL 2004 Shared Task. 2004. [2 ] Carreras X. and M rquez L. (2005). Introduction to the CoNLL22005 Shared Task : Semantic Role Labeling [ C]/ / Proceedings of CoNLL 2005 Shared Task. 2005. [3 ] Gildea D. and J uraf sky D. (2002). Automatic Labe2 ling of Semantic Roles [J ]. Computational Linguistics, 2002, 28 (3) :2452288. [4 ] Pradhan S., Hacioglu K., Krugler V. et al. (2005). Support Vector Learning for Semantic Argument Clas2 sification [ J ]. Machine Learning Journal, 2005, 60 (3) :11239. [5 ] Xue N. and Palmer M. (2004). Calibrating Features for Semantic Role Labeling [ C ]/ / Proceedings of EMNL P, 2004. [6 ] Moschitti A. (2004). A Study on Convolution Kernels for Shallow Statistic Parsing [ C ]/ / Proceedings of ACL22004,2004 : 3352342. [7 ] Che W., Zhang M., Liu T. and Li S. (2006). A Hy2 brid Convolution Tree Kernel for Semantic Role Labe2 ling [ C ]/ / Proceedings of the COL IN G/ ACL 2006 Main Conference Poster Sessions, 2006 : 73280. [8 ] Zhang M., Che W., AW A. T. et al. (2007). A Grammar2driven Convolution Tree Kernel for Semantic Role Classification [ C ]/ / Proceedings of ACL22007, 2007 : 2002207. [9 ] Palmer M., Gildea D. and Kingsbury P. The Proposi2 tion Bank : An Annotated Corpus of Semantic Roles [J ]. Computational Linguistics, 2005, 31 (1). [10 ] Charniak E. A Maximum2entropy Inspired Parser [ C]/ / Proceedings of NAACL22000,2000. [11 ] Collins M. ( 1999). Head2driven Statistical Models for Natural Language Parsing [ D ]. Ph. D. thesis, University of Pennsylvania. [12 ] Punyakanoc V., Koomen P., Roth Dan, and Yih W. (2005). Generalized Inference With Multiple Seman2 tic Role Labeling Systems [ C]/ / Proceedings of CoN2 LL22005,2005. [13 ] Surdeanu M. and Turmo J. Semantic Role Labeling Using Complete Syntactic Analysis [ R]/ / Proceedings of CoNLL22005,2005. [14 ],,. (2007). [J ]., 2007,18 (3) :5652573.