NMR magnetometry with single-chip RF transceivers. Giovanni Boero Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne Switzerland

Similar documents
Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Outline. He Magnetometry for g 2. Babak Abi Oxford - 28April

NMR, the vector model and the relaxation

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

With that first concept in mind, it is seen that a spinning nucleus creates a magnetic field, like a bar magnet

Micromechanical Instruments for Ferromagnetic Measurements

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin

Metallic magnetic calorimeters. Andreas Fleischmann Heidelberg University

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (I) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

The NMR Inverse Imaging Problem

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

V27: RF Spectroscopy

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory

Biochemistry 530 NMR Theory and Practice

Sketch of the MRI Device

Magnetic Resonance Force Microscopy. Christian Degen Department of Physics, ETH Zurich, Switzerland

Magnetic Resonance Spectroscopy EPR and NMR

Chapter 13 Spectroscopy

Physics of Imaging Systems Basic Principles of Magnetic Resonance Imaging II

NMR = Nuclear Magnetic Resonance

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Chemistry 431. Lecture 23

The Basics of Magnetic Resonance Imaging

Nuclear Magnetic Resonance Spectroscopy

Spin Relaxation and NOEs BCMB/CHEM 8190

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance spectroscopy

Measuring Spin-Lattice Relaxation Time

Magnetic Resonance Imaging (MRI)

Chemistry Assignment #2 and TM Magnetism Handout. Determination of Unpaired Electrons in TM Complexes

NMR Spectroscopy. for 1 st B.Tech INTRODUCTION Lecture -1 Indian Institute of Technology, Dhanbad

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

Introduction to Nuclear Magnetic Resonance Spectroscopy

Overhauser Magnetometers For Measurement of the Earth s Magnetic Field

C NMR Spectroscopy

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

10.4 Continuous Wave NMR Instrumentation

Fundamental MRI Principles Module Two

INTRODUCTION TO NMR and NMR QIP

Nuclear Magnetic Resonance

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination

MRI Physics I: Spins, Excitation, Relaxation

Magnetic Resonance Spectroscopy ( )

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

The Proton Magnetic Moment

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation

Control of Spin Systems

NUCLEAR MAGNETIC RESONANCE. The phenomenon of nuclear magnetic resonance will be used to study magnetic moments of nuclei.

Magnetic Measurements

The Nuclear Emphasis

Introduction of Key Concepts of Nuclear Magnetic Resonance

Elements of magnetism and magnetic measurements

Permanent magnet pre-polarization in low field MRI measurements using SQUID

Biophysical Chemistry: NMR Spectroscopy

The Use of NMR Spectroscopy

NMR-spectroscopy of proteins in solution. Peter Schmieder

MAGNETIC FIELDS & UNIFORM PLANE WAVES

Spin Echo Imaging Sequence

Basic p rinciples COPYRIGHTED MATERIAL. Introduction. Atomic s tructure

Lecture #6 (The NOE)

Magnetic Resonance Imaging in a Nutshell

Two-Dimensional Nuclear Magnetic. Resonance at Zero-Field

Chapter 14. Nuclear Magnetic Resonance Spectroscopy

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules

BCMB / CHEM 8190 Biomolecular NMR GRADUATE COURSE OFFERING IN NUCLEAR MAGNETIC RESONANCE

Electron Paramagnetic Resonance

doi: /j.physc

On Electron Paramagnetic Resonance in DPPH

Spin resonance. Basic idea. PSC 3151, (301)

EXAMINATION QUESTION PAPER

ν 1H γ 1H ν 13C = γ 1H 2π B 0 and ν 13C = γ 13C 2π B 0,therefore = π γ 13C =150.9 MHz = MHz 500 MHz ν 1H, 11.

Lecture 2 nmr Spectroscopy


Progress on the Design of the Magnetic Field Measurement System for elisa

Muon g 2. Physics 403 Advanced Modern Physics Laboratory Matthias Grosse Perdekamp. Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich

High-precision measurements of the fundamental properties of the antiproton

MRI beyond Fourier Encoding: From array detection to higher-order field dynamics

I690/B680 Structural Bioinformatics Spring Protein Structure Determination by NMR Spectroscopy

Introduction to NMR! Ravinder Reddy!

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Classical Description of NMR Parameters: The Bloch Equations

Nuclear Magnetic Resonance Spectroscopy

Journal of the Korean Magnetic Resonance Society 2003, 7, Kwangju, , KOREA Received September 29, 2003

Nuclei, Excitation, Relaxation

Spin. Nuclear Spin Rules

Basic Pulse Sequences II - Spin Echoes. TE=12ms TE=47ms TE=106ms TE=153ms UCLA. Radiology

Towards nano-mri in mesoscopic transport systems

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction:

Chapter 8 Magnetic Resonance

Transcription:

NMR magnetometry with single-chip RF transceivers Giovanni Boero Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne Switzerland Giovanni Boero IMMW 2017 07.06.2017

Magnetic Resonance Domain NMR Nuclear Magnetic Resonance ESR Electron Spin Resonance FMR Ferromagnetic Resonance Weakly coupled nuclear spins Weakly coupled electron spins Strongly coupled electron spins Introduction Giovanni Boero IMMW 2017 07.06.2017 2

NMR: Resonance frequency Many nuclei have a non-zero magnetic moment. Nucleus Spin I Natural Abundance Magnetic Moment (µ/µ Ν ) Gyromagnetic Ratio γ (10 7 rad/s T) Resonance Frequency (MHz/T) 1 H 1/2 99.9885 4.84 26.75 42.576 2 H 1 0.0115 1.21 4.11 6.536 13 C 1/2 1.07 1.22 6.73 10.705 17 O 5/2 0.038 2.24 3.63 5.772 19 F 1/2 100 4.55 25.2 40.052 31 P 1/2 100 1.96 10.8 17.235.. e 27 Nuclear Magneton µ N = 5 10 J/T 2m p e 24 Electron Magneton µ B = 9 10 J/T 2m e Giovanni Boero IMMW 2017 07.06.2017 3

NMR: simple experiment ω γ B 0 1 ω = γ B 0 2 3 Giovanni Boero IMMW 2017 07.06.2017 4

NMR: signal and noise (inductive detection) V Signal (t=0): V = 0 0 S u 0 Noise: MVBω noise, rms 4 = ktr f Signal-to-noise ratio: B u (r s ) V 0 M(r s,t) V(t) V cos ( ) 0 0 ω t e t/ T * 2 SNR = MVB ω 0 S u 0 4kTR f V noise Giovanni Boero IMMW 2017 07.06.2017 5

NMR: main applications Molecular Structure Determination 3D Imaging Introduction Giovanni Boero IMMW 2017 07.06.2017 6

NMR of SMALL molecules Ethanol CH 3 -CH 2 -OH 1 H 13 www.sanger.ac.uk C CH 3 -CH 2 -OH 1 H: 43 MHz/T 13 C: 11 MHz/T Introduction Giovanni Boero IMMW 2017 07.06.2017 7

NMR of LARGE molecules (up to 500 kda) Ubiquitin protein (8.5 kda) Introduction Giovanni Boero IMMW 2017 07.06.2017 8

NMR magnetometry L. Bottura, CERN Giovanni Boero IMMW 2017 07.06.2017 9

NMR magnetometry key-features Typical Best. Field range 10 mt to 30 T 1 µt to 100 T Accuracy 10 ppm 10 ppb Resolution 100 ppb/hz 1/2 0.001 ppb/hz 1/2 Temperature range 280 K to 310 K sub-k to 1000 K Giovanni Boero IMMW 2017 07.06.2017 10

NMR magnetometry: Applications Application When By whom Magnetic resonance imaging (MRI) magnets Particles accelerator magnets Ordinary electromagnets and permanent magnets During fabrication During installation in hospitals After quenching in hospitals After room changes in hospitals During fabrication During operation Calibration Hall sensors Physics experiments. General Electrics Philips Toshiba. CERN Fermilab DESY KEK Argonne PSI/SLS. Hall sensors companies University labs. Giovanni Boero IMMW 2017 07.06.2017 11

Metrolab NMR magnetometer (Array) 16 probes 40 probes Giovanni Boero IMMW 2017 07.06.2017 12

Metrolab NMR magnetometer (modified) Giovanni Boero IMMW 2017 07.06.2017 13

Metrolab probes with single-chip transceiver 10 mm 1 mm Single chip CMOS transceiver Giovanni Boero IMMW 2017 07.06.2017 14

Why a single chip integrated transceiver? Single-chip Integrated Transceiver VS Discrete Components Transceiver (for NMR magnetometry) No search of many non-magnetic components. Broadband operation with marginal compromise in noise figure. Much smaller size. Better or equal SNR and magnetic field resolution. Giovanni Boero IMMW 2017 07.06.2017 15

Single-chip transceivers 1 mm Chips area: about 1 mm 2 Single chip I-only transceiver Single chip I-only transceiver (with integrated coil) 300 μm 1 mm Microcoil Single chip IQ transceiver 50 μm Giovanni Boero IMMW 2017 07.06.2017 16

Single-chip IQ transceiver (with external resonator) Single-chip IQ transceiver External resonator Giovanni Boero IMMW 2017 07.06.2017 17

Single-chip IQ transceiver: details RF f = f 0 TX RF Input: -3 dbm TX RF Output: ~10 mw TX Bandwidth: 3-1200 MHz AF RF AF f = Δ f = 2( f 0 +Δ ) f = Δ TX/RX recovery time: ~ 1 µs RX Bandwidth: 3-300 MHz RX Input noise: 1.1 nv/hz 1/2 RX Gain: 54 db IQ error: 3 at 3 MHz 0.1 at 1 GHz Power cons. ~20 mw Giovanni Boero IMMW 2017 07.06.2017 18

Field range SNR = MVB ω 0 S u 0 4kTR f To measure a small B 0 : - Large sample volume - Dynamic nuclear polarization - Polarization at an higher field (flowing sample) - Non-inductive detection methods Giovanni Boero IMMW 2017 07.06.2017 19

Accuracy: accurate «calibrations» Free proton : γ f0 = B0 2π γ = ( 42.577 478 92 ± 0.000 000 29) MHz/T 2π ± 7 ppb Proton in a spherical sample of pure water at 25 C : γ γ f0 = (1 σ) B0= B0 σ = 25.691± 0.011 10 2π 2π γ = (42.576 385 07 ± 0.000 000 53) MHz/T 2π ±13 ppb 6 ( ) Accurate "calibrations" 0.01 ppm CODATA 2014 Giovanni Boero IMMW 2017 07.06.2017 20

Accuracy: chemical shift HO 2 + Free CuSO4 Proton (sat. sol) HO 2 TMS 0 31 23 8 26 5 31 0 ppm Giovanni Boero IMMW 2017 07.06.2017 21

Accuracy: Temperature dependence 26 25.8 Shielding (ppm) 25.6 25.4 Temperature dependence: 0.1 ppm for T=10 C at 25 C in water 25.2 25 0 10 20 30 40 50 60 T ( C) B.W. Petley et al., Metrologia 20, 81 (1984) Yu I Nerenov et al., Metrologia 51, 54 (2014) Giovanni Boero IMMW 2017 07.06.2017 22

Accuracy: Susceptibility effects Material χ (10-6 ) Material χ (10-6 ) Air +0.37 Platinum +290 Water -9.05 Aluminum +20.9 Quartz -11.8 Copper -9.6 Teflon -10.5 Silver -24 FR4-5 Gold -34 SU8-9.75 Silicon -4.2 1 ω0( χ) ω0( χ = 0) α = χ ω ( χ = 0) Susceptibility and Shape of: - Objects in proximity to the sample - Sample itself Susceptibility effects: up to 10 ppm 0 Giovanni Boero IMMW 2017 07.06.2017 23

Accuracy: summary Accurate "calibrations" (in given material, temperature, sample shape,...) 0.01 ppm Temperature dependence: 0.1 ppm for T=10 C at 25 C in water Susceptibility effects: up to 10 ppm Giovanni Boero IMMW 2017 07.06.2017 24

Resolution: Basics Cramer - Rao Lower Bound (CRLB) : Standard deviation on the frequency measurement ( f ) : min f 3/2 2x 1 8(1 e ) TACQ min [Hz] = *, x 2 2 2 * T x x 2 ( s0 / N) 2 π (1 e ) 4 x e T2 s 0 : signal amplitude in time domain [V] 1/2 N : noise voltage spectral density [V/Hz ] T * 2 : effective exponential decay time of the signal [s] f ( f ) 2 1 [Hz] = (for x ) T s N s N FWHM min * π 2 0 / 0 / 3/2 Nikiel A., et al. "Ultrasensitive 3 He magnetometer for measurements of high magnetic fields." Eur. Phys. J. D (2014) Gemmel C., et al. "Ultra-sensitive magnetometry based on free precession of nuclear spins." Eur. Phys. J. D (2010) Gross S., et al. "Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution." Nat. Comm. (2016) Giovanni Boero IMMW 2017 07.06.2017 25

Resolution: Signal processing It (), Qt () 0 { It Qt} FFT ( ), ( ) { } Peak - finder. vi on FFT I( t), Q( t) (or Lorentz fit. vi) f «FFT» It (), Qt () 0 ( It Qt) ϕ=arctg ( ) / ( ) " Unwrap phase. vi" on and " Linear fit. vi" of ϕ f «PHASE» ϕ Giovanni Boero IMMW 2017 07.06.2017 26

Resolution: Results Probe A B C D Frequency [MHz] 300 300 300 60 Field [T] 7.05 (SC) 7.05 (SC) 7.05 (SC) 1.4 (EM) Sample NR Natural Rubber MQ Silicone Rubber H 2 O Water NR Natural Rubber Sample vol. [μl] 10 10 10 10 T 2 [ms] 1 1.5 3000 1 T 2 * [ms] 1 1.5 20 1 T 1 [ms] 400 600 3000 70 Chem. shift [ppm] 5.1/2.1/1.7 0 4.7 5.1/2.1/1.7 Pulse length [μs] 35 35 35 35 Repetition time [ms] 50 50 50 50 Averages 20 20 20 20 Averaging time [s] 1 1 1 1 Measurements 300 300 300 300 Measuring time [s] 300 300 300 300 s 0 [V] 1 1 1 1 N [μv/hz 1/2 ] 8.5 8.5 8.5 8.5 Standard dev. [Hz] [nt] [ppb] CRLB [Hz] [nt] [ppb] 0.2 4.5 0.7 0.006 0.14 0.02 0.2 4.5 0.7 0.04 0.09 0.01 0.1 2.5 0.5 0.0001 0.003 0.0004 Exp. standard deviation >> CRLB!! Reason: Magnetic field fluctuations (electronic noise and frequency stability of the source are negligible) 0.6 14 10 0.006 0.14 0.1 Giovanni Boero IMMW 2017 07.06.2017 27

Two channels probe (to cancel field fluctuations) Two coils, two resonators, two single-chip IQ transceivers Copper wires Acrylic-embedded probe head acrylic 1 cm PMMA capillary PDMS mold Sample material: Water Sample volume: 500 nl Cramer-Rao Lower Bound: 0.02 ppb/hz 1/2 Exp. Measured: 0.06 ppb/hz 1/2 Giovanni Boero IMMW 2017 07.06.2017 28

NMR magnetometry for surgical interventions Spatial resolution: 100 µm Time resolution: 100 ms J. Anders et al., Magn. Reson. Medicine 67, 290 (2012) Our research Giovanni Boero IMMW 2017 07.06.2017 29

NMR spectroscopy of single sub-nanoliter eggs 1.5 pig Richtersius coronifer 50 μm whale Ovum volume [nl] 1 0.5 lancelet human guineapig Heligmosomoides polygyrus bakeri 50 μm 300 μm 0 sea urchin rat roundworm Microcoil 50 μm M. Grisi et al., Scientific Reports 7,44670 (2017) Giovanni Boero IMMW 2017 07.06.2017 30

Multi-nuclei excitation/detection Sample NaBF 4 +H2O Na + +BF 4- +H2O Giovanni Boero IMMW 2017 07.06.2017 31

Sponsors and people Marco Grisi Enrica Montinaro Alessandro Matheoud Gabriele Gualco Giovanni Boero IMMW 2017 07.06.2017 32