Notes on Absorption and Impedance Measurements

Similar documents
THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES

SOUND TRANSMISSION LOSS MEASUREMENTS - AN AUTOMOTIVE OVERVIEW

LABORATORY MEASUREMENTS OF THE SOUND ABSORPTION OF CLASSICTONE 700 ASTM C Type E Mounting. Test Number 2

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS

An impedance tube measurement technique for controlling elastic behavior of test samples

In-situ measurements of the complex acoustic impedance of materials in vehicle interiors

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings

A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves in a Standing Wave Tube

Porous Materials for Sound Absorption and Transmission Control

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica

Experimental investigation of perforations interactions effects under high sound pressure levels

Development of a small-scale reverberation room

Acoustic performance of industrial mufflers with CAE modeling and simulation

Benefits of Reduced-size Reverberation Room Testing

DELTA Test Report. DANAK TEST Reg. no Measurement of Sound Absorption Coefficient for Kvadrat Soft Cells Wall Panel Type Time

REVIEW OF ACOUSTIC CHARACTERISTICS OF MATERIALS USING IMPEDANCE TUBE

Evaluation of standards for transmission loss tests

The measurement of complex acoustical properties of homogeneous materials by means of impulse response in a plane wave tube

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile

Muffler Transmission Loss Simple Expansion Chamber

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials

DELTA Test Report. Measurement of sound absorption coefficient for 15 mm Fraster felt Plus acoustic panels with mounting depth 45 mm

Measurement of Acoustic Properties of light weight concrete SL-Deck

Introduction to Acoustics Exercises

Simulation of Horn Driver Response by Direct Combination of Compression Driver Frequency Response and Horn FEA

Mecanum. Acoustic Materials: Characterization. We build silence. Mecanum Inc.

ETS-LINDGREN ACOUSTIC RESEARCH LABORATORY OFFICIAL LABORATORY REPORT ARL-SA6266/ARL-SA6274 Revision 0 ARL

ROOM RESONANCES USING WAVE BASED GEOMET- RICAL ACOUSTICS (WBGA)

Standard Test Method for Field Measurement of Sound Power Level by the Two- Surface Method 1

Consultancy Report Ref: 9383-R01

MEASUREMENTS OF SOUND ABSORPTION TIMBERCRETE

ISO 354 INTERNATIONAL STANDARD. Acoustics Measurement of sound absorption in a reverberation room

Sound radiation and sound insulation

Sound Engineering Test and Analysis

Answer - SAQ 1. The intensity, I, is given by: Back

Air Permeability and Acoustic Absorbing Behavior of Nonwovens

REPORT ON THE DETERMINATION OF SOUND ABSORPTION COEFFICIENTS OF WOVEN IMAGE ECHO PANEL 7MM TESTED WITH A 20MM AIR GAP IN A REVERBERATION ROOM.

DELTA Test Report. Measurement of Sound Absorption for AqFlex ON, one Sample as a discrete Object. Performed for Flex Acoustics

The Acoustic Measurement Capabilities in the Acoustic Linear Research Laboratory at University of Cincinnati

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Method of Measuring Machinery Sound Within an Equipment Space

Effect of Circumferential Edge Constraint on the Transmission Loss of Glass Fiber Materials

TFI Report Sound Absorption Impact Sound Insulation

Structural Acoustics Applications of the BEM and the FEM

Proceedings of Meetings on Acoustics

Gradient metamaterial layers as impedance matching devices for efficient sound absorption

THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME

Acoustic response in non-diffuse rooms

ISO INTERNATIONAL STANDARD

Calculation of spatial sound intensity distribution based on synchronised measurement of acoustic pressure

INTER-NOISE AUGUST 2007 ISTANBUL, TURKEY

On the variations of acoustic absorption peak with flow velocity in Micro Perforated Panels at high level of excitation

TFI Report Sound Absorption Impact Sound Insulation

Modern measurement techniques in room and building acoustics

campus, Kuching, Malaysia Kuching, Malaysia

Testing Procedure: AS ISO

Experimental approach on natural frequency of window vibration induced by low frequency sounds

Sound radiation of a plate into a reverberant water tank

Measurement of sound absorption coefficient for Fraster felt SpaceCover

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A.

Normal Incidence Acoustic Absorption Characteristics of a Carbon Nanotube Forest

A STUDY ON SOUND ABSORBING PROPERTIES OF BIO-DEGRADABLE ACOUSTIC MATERIAL

Measurement and prediction of the acoustic performance of poroelastic foam filled mufflers for sleep apnoea devices

Modeling of Membrane Sound Absorbers

The acoustic characterization of porous media and its standards

DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES OF TRANSMISSION CASING STRUCTURES

LABORATORY MEASUREMENT OF SOUND ABSORPTION OF SONOGLASS SPRAY-ON TREATMENT IN THREE CONFIGURATIONS

ETS-LINDGREN ACOUSTIC RESEARCH LABORATORY OFFICIAL LABORATORY REPORT ARL-SA6712/ARL-SA6713 Revision 0 ARL

A novel technique for measuring the reflection coefficient of sound absorbing materials

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE

ACOUSTIC TESTS ON ORIGINAL CONCRETE AND INERT MIXTURE MATERIALS

Section 6.0 : Advanced Transmission Line Modeling Techniques By Martin J King, 07/05/02 Copyright 2002 by Martin J. King. All Rights Reserved.

Summary. The basic principles of the simulation technique SERT

Standard Practices for Air Speed Calibration Testing

FDTD analysis on the sound insulation performance of wall system with narrow gaps

Test Report. RI Acoustic Lab. Measurement of Sound Absorption Coefficient for RockDelta NoiStop Noise Barrier. 20 Feb. 07

PART VIII: ABSORPTIVE SILENCER DESIGN

ETS-LINDGREN ACOUSTIC RESEARCH LABORATORY OFFICIAL LABORATORY REPORT ARL-SA6986/ARL-SA6987 Revision 0 ARL

Experimental Investigation on the Acoustic Scattering Matrix for a Centrifugal Pump

ADVANCED STUDIES ON SERIES IMPEDANCE IN WAVEGUIDES WITH AN EMPHASIS ON SOURCE AND TRANSFER IMPEDANCE

REPORT ON THE DETERMINATION OF SOUND ABSORPTION COEFFICIENTS OF WOVEN IMAGE ECHO PANEL 24MM TESTED WITH NO AIR GAP MEASURED IN A REVERBERATION ROOM.

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS

Investigation of the acoustic black hole termination for sound waves propagating in cylindrical waveguides

1. Introduction. 2. ISO 3745 and ISO standard comparison

ISO INTERNATIONAL STANDARD. Acoustics Acoustic insulation for pipes, valves and flanges

Radiated sound power estimates of building elements by means of laser Doppler vibrometry

Niigata University, Japan. Kobayasi Institute of Physical Research, Japan. Niigata University, Japan

USE OF RESONANCE AND ANTI RESONANCE FREQUENCY SHIFTS TO LOCATE AND SIZE HOLES IN PIPE AND DUCT WALLS

Sound-Absorbing and Insulating Enclosures for Ultrasonic Range

Radiated Sound Power from a Curved Honeycomb Panel

WACEL AGGREGATE LABORATORY TESTING TECHNICIAN

ERRATA AND ADDITIONS FOR "ENGINEERING NOISE CONTROL" 4th Edn. First printing April 23, 2018

Effect and minimization of errors in in-situ ground

A Thesis Presented to The Academic Faculty. By Alexander Michaud

ODEON APPLICATION NOTE Calibration of Impulse Response Measurements

45º CONGRESO ESPAÑOL DE ACÚSTICA 8º CONGRESO IBÉRICO DE ACÚSTICA EUROPEAN SYMPOSIUM ON SMART CITIES AND ENVIRONMENTAL ACOUSTICS

Paseo Recoletos, nº Madrid TEST REPORT

Sound Absorption Test Intertek. kraft paper softwall + softblock modular system. m o l o d e s i g n, l t d

FastBEM Acoustics. Verification Manual , Advanced CAE Research, LLC (ACR) Cincinnati, Ohio, USA All Rights Reserved

Transcription:

Notes on Absorption and Impedance Measurements Andrew F. Seybert University of Kentucky Lexington, KY 456-18 859-257-6336 x 8645 seybert@engr.uky.edu Applicable Standards. There are two standards 1,2 for the measurement of acoustical properties of materials: ASTM E15 and ISO 1534-2. These two standards parallel one another; the first was developed in the U.S. by ASTM and the second developed by the International Standards Organization. Both describe what has come to be known as the two-microphone or transfer-function method of measuring absorption and impedance of acoustical materials. 3,4 These standards establish acceptable conditions under which reliable data may be obtained; however, good practice suggests that equipment and test conditions exceed the minimal requirements of the standards. The Two-Microphone Method. The two-microphone method is shown schematically in Figure 1 below. A sample of the material to be tested is placed in a sample holder and mounted to one end of a straight tube. A rigid plunger with an adjustable depth is placed behind the sample to provide a reflecting surface. A sound source, typically a high-output acoustic driver, is connected at the opposite end of the tube. A pair of microphones is mounted flush with the inner wall of the tube near the sample end of the tube. Figure 1 The Two-Microphone Method 1

A multi-channel spectrum analyzer is used to obtain the transfer function (frequencyresponse function) between the microphones. In this measurement, the microphone closer to the source is the reference channel. From the transfer function H 12, the pressure reflection coefficient R of the material is determined from the following equation: R = H e e jks 12 j 2k ( L+ s) e jks H12 where L is the distance from the sample face to the first microphone and s is the distance between the microphones, k = 2πf/c, f is the frequency, and c is the speed of sound. From the reflection coefficient, the absorption coefficient α and normalized impedance Z/ρ c of the sample may be determined from the following equations: α = 1 R 2 Z 1 + / ρ c = 1 R R Performance of the Two-Microphone Method. The accuracy and repeatability of the two-microphone method has been evaluated in a round-robin test 5 administered by ASTM. In this test, samples of nominally identical material were prepared and tested by over a dozen independent laboratories, including the University of Kentucky. These results were compared to one another and to similar results obtained using the wellestablished but antiquated standing wave method. 6 Overall, excellent agreement was obtained between the two methods. The User s Performance Test. Despite the good agreement reported in the roundrobin test and the guidance of the standard for calibrating the microphones and conducting the measurement, the standard offers no performance test with which the user can evaluate the hardware, software, and the measurement process itself in the user s laboratory. This is because there is no standard acoustical material whose acoustical properties are known absolutely. Instead, the standard 1 recommends that each laboratory maintain a reference specimen to be tested periodically for quality assurance. To be effective, the properties of the reference specimen should remain stable for many years. However, there is an absolute test that the user can perform easily and quickly to check the measurement system and the measurement process. This test consists of measuring the imaginary part of the impedance of a closed tube of length L as shown in Figure 2 below. To conduct the test, the sample is removed from the sample holder, and the plunger of the sample holder is set to a specified depth (for example, L =.1 m). The depth is not important, but its value must be known accurately. 2

Figure 2 Measuring the impedance of a closed tube. The theoretical normalized impedance Z/ρ c of a closed tube of length L is given by: Im( Z / ρ oc) = 1/ tan kl where k = 2πf/c. ACUPRO system. Figure 3 shows an example of the above measurement using the 5 4 3 Test Theory (75F) Im (Z/rho*c) 2 1-1 5 1 15 2 25 3 35 4-2 -3-4 -5 Frequency (Hz) Figure 3 Comparison between the measured and theoretical impedance of a closed tube of length.1 m. 3

Signal-to-Noise Ratio. Accurate measurements of material absorption require that the sound field be substantially larger than the background noise inside the tube. The minimum signal-to-noise ratio will occur at the minima of the standing waves; these minima can be as much as 25 db below the maximum levels in the tube. In addition, it is often necessary to measure material absorption at relatively low levels to match field conditions (e.g., approximately 65 db for materials used in offices or vehicles). The standards 1 recommend that the level of sound in the tube be at least 1 db greater than the background noise level, but 2 3 db is preferred. Taken together, these conditions require a background noise level in the tube in the 1-2 db range. To achieve this low background level, the tube must be constructed of heavy materials and must be sealed properly at all openings (microphone ports, sample holder, sound source, etc.) so that the transmission loss of the tube is at least 45 db. Construction of the Tube. The tube should be massive and sufficiently rigid to avoid (1) transmission of noise into the tube from outside and (2) vibration excitation by the sound source or from background sources (e.g., doors closing). The standards 2 recommend the wall thickness be 5 percent of the tube diameter, but 1 percent is preferred. The standards do not specify the tube material, but a material such as brass is preferred because its damping is several times that of lightly damped materials such as aluminum. Brass is also three times as dense as aluminum. The tube must be sufficiently long to present a stable plane-wave sound field to the sample under test. All sound sources produce spherical waves that decay into plane waves over distance inside a tube. However, this distance can be quite long for largediameter tubes. The standards recommend a tube length of at least three diameters, but this is marginal; a length of at least 1-15 diameters is preferred. Sample Holder. Like the tube, the sample holder should be massive and rigid. In addition, it should have a smooth, machined surface for mating with the tube. This is necessary to insure that no sound leaks into or out of the tube where the sample holder and the tube meet. The sample holder should also have a massive back plate of at least 2 mm in length 1,2 behind the sample. The back plate or plunger should be adjustable to permit different thickness materials to be tested and to allow for an air space behind the sample, if necessary. Microphones and Mounting. The microphones must be mounted flush with the inside wall of the tube and isolated from the tube (to minimize sensitivity to vibration). Microphones isolated within a specially designed microphone holder that is also isolated from the tube (double isolation) provide the best results. The particular microphones used are not important as long as they are laboratory grade and are the same type and size; typically either ½ or ¼ inch microphones are used. It is not necessary to use socalled matched or other special microphones because a microphone calibration is conducted prior to a measurement anyway. Figure 4 shows a comparison between the absorption coefficient of a sample of 1 foam measured using pairs of ¼ and ½ inch microphones. There is no appreciable difference in these results. 4

1.9 Absorption Coefficient.8.7.6.5.4.3.2 1/2 inch microphones 1/4 inch microphones.1 1 2 3 4 5 Frequency (Hz) Figure 4 Absorption coefficient of 1" foam using both 1/4 and 1/2 inch microphone pairs. Sound Source. The sound source should provide sound energy over a frequency and intensity range sufficient for testing. The frequency response of the source need not be flat (+/- 1 db is sufficient 1 ). It is usually important for the sound source to have a highpower rating (e.g., 5 to 1 watts) so that high intensity sound may be generated inside the tube for certain types of testing. For example, the absorption of many materials is dependent on the intensity of sound; it is therefore helpful to test such materials at several levels above and below field conditions. Mounting the Sample. Probably the closest thing to art in the two-microphone method is the mounting of the sample. According to the standards 1 the sample must fit snugly into the specimen holder, not so tightly that it bulges in the center, nor so loosely that there is space between its edge and the holder. Pliable materials such as foams and glass fiber are easy to cut and fit into a holder. Materials that are rigid or have stiff layers should be cut slightly undersize and sealed around the edges using Vaseline or wrapped with a couple of layers of tape to eliminate the air gap between the sample and the tube. The goal is to achieve a very slight interference fit between the sample and the holder. The sample must also be in contact with the rigid plunger (see Figure 1). An air gap will affect the results. In field situations where the material is used with an air gap, the 5

same air gap should exist between the sample and the plunger so that the test duplicates field conditions. Temperature Correction. The standards 1,2 recommend that the temperature be held constant during the test to within 1 C. The software must have provisions for correcting the speed of sound and density of air for temperature. References: 1. ASTM E15, Standard test method for impedance and absorption of acoustical materials using a tube, two microphones, and a digital frequency analysis system. 2. ISO 1534-2, Acoustics Determination of sound absorption coefficient and impedance in impedance tubes Part 2: Transfer-function method. 3. Seybert, A. F., and Ross, D. F., Experimental Determination of Acoustic Properties Using a Two-Microphone Random-Excitation Technique, J. Acoust. Soc. Am., Vol. 61, No. 5, pp. 1362-137, 1977. 4. Chung, J. Y., and Blaser, D. A., Transfer Function Method of Measuring In-Duct Acoustic Properties I. Theory and II. Experiment, J. Acoust. Soc. Am., Vol. 68, No. 3, pp. 97-921, 198. 5. Haines, James, Standing wave and two-microphone impedance tube round-robin test program, ASTM Research Report No. RR:E33-16, 1989. 6. ASTM C384, Test method for impedance and absorption of acoustical materials by the impedance tube method. 6