Porous Materials for Sound Absorption and Transmission Control

Size: px
Start display at page:

Download "Porous Materials for Sound Absorption and Transmission Control"

Transcription

1 Purdue e-pubs Publications of the Ray W. School of Mechanical Engineering Porous Materials for Sound Absorption and Transmission Control J Stuart Bolton, bolton@purdue.edu Follow this and additional works at: Bolton, J Stuart, "Porous Materials for Sound Absorption and Transmission Control" (2005). Publications of the Ray W. Herrick Laboratories. Paper This document has been made available through Purdue e-pubs, a service of the Libraries. Please contact epubs@purdue.edu for additional information.

2 Porous Materials for Sound Absorption and Transmission Control J. Stuart Bolton Ray W. it

3 Introduction What are Porous Media? Two phases Solid Fluid What do they do? Convert organized acoustical motion into heat What don t they do? Dissipation of Energy Block sound : i.e., not usually useful as barriers (by themselves)

4 Introduction Dissipation mechanisms Viscous Thermal Structural Examples of porous materials Glass fiber Mineral wool Open or partially open cell foams Applications Automotive, Aircraft,

5 SEM Glass Fiber

6 SEM Resinated Glass Fiber

7 SEM Partially Reticulated Foam

8 SEM Shoddy

9 SEM Thinsulate

10 Sound Propagation in Porous Porous Materials Media Two phases: Solid (frame) and gas (air) Allow two longitudinal wave types which appear in both phases Allow transverse wave motion if frame possesses shear stiffness Display large sensitivity to boundary conditions if frame is relatively stiff (modulus near that of air)

11 Transmission Measurements Test signal: Linear Frequency Sweep, 0 Hz-25 khz, 20 ms Sample Rate: 100 khz Resolution: 12 bits Post-Acquisition: Resample to 50 khz

12 Foam Impulse Response Note: Frame Wave- first arrival

13 Absorption treatments Bonded/Bonded membrane foam backing Bonded/Unbonded airspace Unbonded/Bonded Unbonded/Unbonded

14 Normal Incidence Absorption Effects of Airspace at front and rear 1. Film/Foam/Backing 2. Film/Space/Foam/Backing 3. Film/Foam/Space/Backing /S /B 4. Film/Space/Foam/Space/Backing Foam 25 mm, 30kg/m 3 Membrane kg/m 2 Airspaces 1 mm

15 Characterization ti of Porous Media Rigid Solid phase does not move Frame bulk modulus significantly greater than that of air Airborne wave only *situations in which frame is not excited directly Porous ceramics Sintered metals

16 Characterization ti of Porous Media Limp Solid phase moves driven by fluid motion only Frame bulk modulus significantly less than of air Airborne wave only Limp glass fibers, thinsulate and other fibrous media

17 Characterization ti of Porous Media Elastic Solid phase moves Frame bulk modulus of same order of that as air Airborne, frame and shear waves Boundary d conditions are very important t Polyurethane and polyimide foams

18 Elastic Physical Properties of Porous Media Acoustical properties are determined by macroscopic physical properties. p Limp gid Ri - Flow resistivity - porosity Fluid-acoustical parameters - pore tortuosity - Bulk density - In vacuo bulk modulus - Shear modulus - Loss factor Elastic properties With knowledge of these properties the acoustical performance of porous media can be predicted.

19 Physical Properties of Porous Media Flow Resistivity Resistance to steady state flow through a porous material Determined by - pore tortuosity - viscous drag When pores are straight, measure of viscous dissipation potential

20 Measurement of Physical Properties- Flow Resistivity

21 Physical Properties of Porous Media Tortuosity Measure of deviation of pore from straight line through h material Ratio of actual path length through material to linear path length Results in inertial coupling between solid and fluids phases Ranges from 1 (low density fibrous material) to 10 (partially reticulated foam)

22 Modeling of Porous Media Objective Limited Material Microstructure Well Developed Analytical Well Developed Macroscopic Properties Fundamental Acoustic Properties Installed Acoustic Properties Numerical Initial Work

23 Microstructure to Macrostructure For fibrous media made up of mono-diameter fibers (e.g., from Beranek, Noise and Vibration Control)

24 Modeling of Porous Media Approach followed by Bolton and Allard Based on theory of elastic porous materials by Biot (1956): - Allows transverse wave motion - Expressed in very general form - Most widely used in geophysics Here: - Adapt theory to acoustic porous materials (i.e., foam and glass fiber) - Express in terms of conventional variables (i.e., displacement and pressures) - Derive boundary conditions applicable to typical reflection and transmission problems Results: - First theory capable of predicting oblique incidence behavior of foam in noise control application

25 Theoretical Approach WRITE: - stress-strain strain relations for each phase - Dynamic relations for each phase COMBINE TO YIELD TWO WAVE EQUATIONS: - Volumetric strain - Rotational strain FROM SOLUTIONS DERIVE: - Displacement fields - Normal and shear stresses at boundaries DETERMINE COMPONENT AMPLITUDES: - By application of boundary conditions

26 Notation Forces acting on solid phase/unit material area: Forces acting on fluid phase/unit material area: * Notes: 1. s = - hp, where h=porosity 2. Solid displacement denoted by ū 3. Fluid displacement denoted by Ū

27 The RAYLEIGH Model The original model The modified model (allowing for pore tortuosity) t

28 Fluid-Structural Coupling Inertial proportional to relative acceleration Viscous proportional to relative velocity

29 Dynamic Relations ) ( ) ( 1) ( y y y y y xy y U u t b U u t q t u x y Solid: y y y y t t t x y ) ( ) ( 1) ( y u U b u U q U s Fluid: ) ( ) ( 1) 2 ( y y y y u U t b u U t q t y where = bulk density of frame where ρ 1 = bulk density of frame ρ 2 =ρ 0 h (bulk fluid density) q 2 = structure factor (inertial coupling) q structure factor (inertial coupling) b = viscous coupling factor * Note : Viscous and inertial coupling

30 Wave Equations 4 2 Volumetric Strains: e A e Be 0 Solution of form: jk 1, 2 Ce x Where: k 2 1,2 A A 2 2 4B Note: two longitudinal wave types distinguished by different wave numbers: i.e., Airborne wave Frame wave

31 Wave Equations 2 2 Rotational Strains: z k 0 t z Solution of form: Ce jk t x Where: ω z = z-component of k t = transverse wave wave number Note: single transverse wave type

32 Phase Speed and Attenuation Phase Speed Attenuation

33 Forms of Solutions e [ C 1 e jk 1 y y C 2 e jk 1 y y C 3 e jk 2 y y C 4 e jk 2 y y ] e jk x x z jk ty y [ C 5 e C 6 ty C e ] jk y e jk x x where: k k k 2 2 1, 2 y 1, 2 y x and k ty k 2 t k 2 x Then derive:, and z, u, u, u, u, U, U, U, U l x t x, s, y l xy y t x l x t x l y t x

34 Solid Displacement: u y je jk Forms of Solutions x x k 1 y jk k 1 y y 1 y e C k 1 k 1 k k jk 1 1 y 2 y jk k 2 y y 2 y e C k 2 e jk 2 2 y k e y C y 2 C 4 Longitudinal k x jk x jk y jk y e C e C e x ty j k t ty Transverse Similar expression for U y,σσ y,ττ xy, etc., all in terms of six unknown constants C 1 -C 6 ; they are determined by application of the boundary conditions.

35 Sound Transmission Through Double Panels Approach: Substitute allowed solutions into boundary conditions. Arrange as matrix problem in wave amplitudes and solve for required coefficients.

36 Open Surface: Boundary Conditions 1. Volume Velocity: v y = iω [ (1-h) u y + h U y ] 2. Fluid Force: -h p = s 3. Solid Force: - (1-h) p = σ y 4. Shear Force: τ xy = 0

37 Boundary Conditions Bounded Euler-Bernoulli Plate (D, m s ): 1. Normal Velocity: v y = iω W 2. Solid Displacement: u y = W 3. Fluid Displacement: U y = W 4. Tangential Displacement: u x = - (h 1 /2) W/ x Eqn. of Motion: W W h D m s ( y s ) p 4 2 x t 2 ( 1 xy x Note: 1. transverse wave excitation through plate thickness affects coupling.

38 Absorption treatments Bonded/Bonded membrane foam backing Bonded/Unbonded airspace Unbonded/Bonded Unbonded/Unbonded

39 Normal Incidence Absorption Effects of Airspace at front and rear 1. Film/Foam/Backing 2. Film/Space/Foam/Backing 3. Film/Foam/Space/Backing /S /B 4. Film/Space/Foam/Space/Backing Foam 25 mm, 30kg/m 3 Membrane kg/m 2 Airspaces 1 mm

40 Sound Absorption Treatments Owing to high impedance frame waves 1. Loose surface membrane yields better overall sound absorption than bonded membrane (with exception of very low frequencies). 2. Small airspace (~ 1 mm) behind foam layer enhances low frequency performance with or without front membrane. 3. Light, loose membrane on foam with thin backing space gives performance as good as unfaced foam while protecting foam.

41 Sound Transmission Through Approach: Double Panels Substitute allowed solutions into boundary conditions. Arrange as matrix problem in wave amplitudes and solve for required coefficients

42 Transmission Loss Measurements Procedure - Measure 1/3 octave mean square pressure in source room ( Ii ) - Measure 1/3 octave transmitted intensity averaged over panel area ( It ) - TL = 10 log ( Ii / It )

43 Test Panel Mounting

44 Foam Mounting Note: Panel Dimensions 1.2 m by 1.2 m

45 Panel Configurations Tested Foam: 30 kg/m 3 26 mm thick Panel: Aluminum 0.05 and 0.03 thick Panel Separation: 26 mm to 41 mm

46 Transmission Loss Double Panel: Lined & 0.03 Theory Experiment Foam UNBONDED to incident side panel

47 Transmission Loss Double Panel: Lined & 0.05 Theory Experiment Foam BONDED to both panels

48 Transmission Loss Double Panel: Lined & 0.05

49 Sound Transmission High impedance frame wave causes performance to depend on mounting. Avoid direct excitation of frame waves - do not continuously bond foam to backing - do not continuously bond surface treatments to foam Bonded attachment - Shifts mass-air-mass resonance to higher frequencies - Decreases high frequency transmission loss

50 Multi-layer models and GUI program Develop various combinations of iso. or aniso. foam, stiff panel and air layers. Implement user-friendly program running as GUI form. Organizing i by GUI

51 Aircraft Application Conventional ribbed-aluminum fuselage Y X Honeycomb core Different stiffness in X,Y & Z dir. solid and fluid (air) parts Replaced by Nomex honeycomb sandwich Panel Z Z Y Transversely poro-elastic modeling X Transversely isotropic properties 5 elastic constants : E x = E y, E z,g zx,v xy,v zx Porous foam with constants, porosity, bulk density, flow resistivity and tortuosity

52 TL for 1/2 lined and unlined Fuselage Example Lined model 80 Lined with 1/2 glass fiber prediction measurement Unlined model Unlined - 1/2 air layer TL (db) prediction 20 measurement 10 * About 15dB improvement above 1kHz by lining with ½ fibrous material in the air space between honeycomb panel and the interior trim Frequency (Hz)

53 Finite Element Modeling Practical Treatments

54 Shape Optimization of Foam Wedge Objective maximize absorption offered by a wedge over a specified frequency range rigid piston constrained edges air f oam u o e jt a y x hard wall L c d - Wedge defined by θ when volume and a is held constant - Given volume find optimum angle, θ

55 Shape Optimization of Foam Wedge (a) (b) = 36o (optimal wedge) = 132 o 0.2 = 180 o Frequency (Hz) wedge tip angle ()

56 System Configurations - In system (b), tortuosity of a foam layer is varied spatially across the duct (in y-direction).

57 Sound Transmission Through A Wedge

58 Sound Transmission Through A Foam Layer Having Spatially Graded Tortuosity

59 Experimental Setup High Frequency Tube B & K Type 3560 Pulse System (Four Channel) Signal Generator Signal Amplifier Kg m 2.9 cm 7.5 cm Microphones Aviation grade glass fiber Anechoic Termination New Sample Holder Two-Microphone Impedance Measurement Tube B&KType4206

60 Anechoic Transmission Loss Experiment Prediction using FEM (with edge constraint) Prediction without edge constraint 30 TL (db) Increase in TL due to edge 5 constraint Shearing mode Frequency (Hz)

61 Constrained around Edge (50 Hz Hz) Experiment FEM TL (db) Hz 280 Hz Frequency (Hz)

62 Laser Measurement Setup (Large Tube, 1 Sample A) x B & K Type 3560 Pulse System (Four Channel) Computer A B d x 2 x 1 Polytec Fiber OFV 3000 Controller Signal Generator Signal Amplifier Polytec Fiber OFV 511 Fiber interferometer Sample Plexiglass Two-Microphone Impedance Measurement Tube B & K Type 4206

63 The 1 st and 2 nd Mode Shapes of the Edge-constrained Sample (1 ) FEM (a) Experiment (b) st Mode at 100 Hz vf/p / vf/p ma ax vf/p / vf/p ma ax y y x x (c) (d) nd Mode at 350 Hz vf/p / vf/p max vf/p / vf/p max y y x x

64 Summary Three types of porous media: rigid, limp and elastic Wave propagation can be modeled d accurately using Biot theory and later variants Given values for macroscopic parameters, acoustical behavior of sound absorbing materials can be accurately predicted Foam finite elements can be used to model arbitrarilyshaped treatments

65 Future Challenges Anisotropy all noise control materials are anisotropic Inhomogeneity all noise control materials are inhomogeneous Nonlinearity all noise control materials are nonlinear Inhomogeneous treatments spatially distributed properties to improve dissipation Material optimization especially foams and fibrous materials Addition of tuned elements to fibers SEA compatible models

Materials and Systems for Noise Control: Categorization and Challenges

Materials and Systems for Noise Control: Categorization and Challenges Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 5-13-2010 Materials and Systems for Noise Control: Categorization and Challenges J Stuart

More information

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 7-2013 The Influence of Boundary Conditions and Constraints on the Performance of Noise

More information

Effect of Circumferential Edge Constraint on the Transmission Loss of Glass Fiber Materials

Effect of Circumferential Edge Constraint on the Transmission Loss of Glass Fiber Materials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 12-1999 Effect of Circumferential Edge Constraint on the ransmission Loss of Glass Fiber

More information

Inverse Characterization of Poro-Elastic Materials Based on Acoustical Input Data

Inverse Characterization of Poro-Elastic Materials Based on Acoustical Input Data Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 0-29-2009 Inverse Characterization of Poro-Elastic Materials Based on Acoustical Input Data

More information

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS Twelfth International Congress on Sound and Vibration CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS G. Pispola a and K. V. Horoshenkov b a Department

More information

Fibrous Material Microstructure Design for Optimal Damping Performance

Fibrous Material Microstructure Design for Optimal Damping Performance Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 12-8-2017 Fibrous Material Microstructure Design for Optimal Damping Performance Yutong

More information

The Effect of Flexibility on the Acoustical Performance of Microperforated Materials

The Effect of Flexibility on the Acoustical Performance of Microperforated Materials Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering -- The Effect of Flexibility on the Acoustical Performance of Microperforated Materials

More information

Modeling of Membrane Sound Absorbers

Modeling of Membrane Sound Absorbers Purdue e-pubs Publications of the Ray W. School of Mechanical Engineering 8- Modeling of Membrane Sound Absorbers J Stuart Bolton, bolton@purdue.edu Jinho Song Follow this and additional works at: http://docs.lib.purdue.edu/herrick

More information

Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media

Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 11-6-2015 Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media

More information

Random incidence transmission loss of a metamaterial barrier system

Random incidence transmission loss of a metamaterial barrier system Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 11-2014 Random incidence transmission loss of a metamaterial barrier system Srinivas Varanasi

More information

Mecanum. Acoustic Materials: Characterization. We build silence. Mecanum Inc.

Mecanum. Acoustic Materials: Characterization. We build silence. Mecanum Inc. ecanum We build silence Acoustic aterials: Characterization ecanum Inc. info@mecanum.com www.mecanum.com otivation Sound quality in vehicles starts at the design stage odels are used to simulate the acoustics

More information

Acoustical Design of Vehicle Dash Insulator

Acoustical Design of Vehicle Dash Insulator Acoustical Design of Vehicle Dash Insulator 2011-26-0022 Published on 19 th -21 st January 2011 SIAT, India S K Jain, Paresh Shravage, Manasi Joshi and N V Karanth The Automotive Research Association of

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 FREQUENCY DEPENDENCY AND ANISOTROPY OF THE ELASTIC CONSTANTS OF (NON-)POROUS MATERIALS AND THEIR INFLUENCE ON THE USAGE IN BUILDING

More information

Acoustic contributions of a sound absorbing blanket placed in a double panel structure: Absorption versus transmission

Acoustic contributions of a sound absorbing blanket placed in a double panel structure: Absorption versus transmission Acoustic contributions of a sound absorbing blanket placed in a double panel structure: Absorption versus transmission Olivier Doutres a and Noureddine Atalla Groupe d Acoustique de l Universite de Sherbrooke,

More information

Validity of the limp model for porous materials: A criterion based on the Biot theory

Validity of the limp model for porous materials: A criterion based on the Biot theory Validity of the limp model for porous materials: A criterion based on the Biot theory Olivier Doutres, a Nicolas Dauchez, Jean-Michel Génevaux, and Olivier Dazel Laboratoire d Acoustique UMR CNRS 6613,

More information

Development of an analytical solution of modified Biot s equations for the optimization of lightweight acoustic protection

Development of an analytical solution of modified Biot s equations for the optimization of lightweight acoustic protection Development of an analytical solution of modified Biot s equations for the optimization of lightweight acoustic protection Jamil Kanfoud a and Mohamed Ali Hamdi Laboratoire Roberval, Université de Technologie

More information

A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves in a Standing Wave Tube

A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves in a Standing Wave Tube Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 2009 A Transfer Matrix Method for Estimating the Dispersion and Attenuation of Plane Waves

More information

Rigid-Frame Porous Material Acoustic Attenuation on Compressor Discharge

Rigid-Frame Porous Material Acoustic Attenuation on Compressor Discharge Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2012 Rigid-Frame Porous Material Acoustic Attenuation on Compressor Discharge Paulo Henrique

More information

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings Transmission loss of rectangular silencers using meso-porous and micro-perforated linings T.E.Vigran Acoustic Group, Department of Electronics and Telecommunications, Norwegian University of Science and

More information

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile

1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile 1817. Research of sound absorption characteristics for the periodically porous structure and its application in automobile Xian-lin Ren School of Mechatronics Engineering, University of Electronic Science

More information

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe Transmission Loss of a Dissipative Muffler with Perforated Central Pipe 1 Introduction This example problem demonstrates Coustyx ability to model a dissipative muffler with a perforated central pipe. A

More information

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials Acoustics and Vibrations Group Université de Sherbrooke, QC CANADA Département génie mécanique Université de Sherbrooke Sherbrooke, QC CANADA Tel.: (819) 821-7157 Fax: (819) 821-7163 A 3 D finite element

More information

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica Sound radiation and transmission Professor Phil Joseph Departamento de Engenharia Mecânica SOUND RADIATION BY A PISTON The piston generates plane waves in the tube with particle velocity equal to its own.

More information

SOUND TRANSMISSION LOSS MEASUREMENTS - AN AUTOMOTIVE OVERVIEW

SOUND TRANSMISSION LOSS MEASUREMENTS - AN AUTOMOTIVE OVERVIEW NSA-15 Goa National Symposium on Acoustics Acoustics for Ocean Environment SOUND TRANSMISSION LOSS MEASUREMENTS - AN AUTOMOTIVE OVERVIEW Paresh Shravage Alfa Acoustics Pune, Maharashtra 1133, India e-mail:

More information

Semeniuk, B., Göransson, P. (2018) Modelling the Dynamic Viscous and Thermal Dissipation Mechanisms in a Fibrous Porous Material In:

Semeniuk, B., Göransson, P. (2018) Modelling the Dynamic Viscous and Thermal Dissipation Mechanisms in a Fibrous Porous Material In: http://www.diva-portal.org This is the published version of a paper presented at COMSOL Conference 2018 Lausanne. Citation for the original published paper: Semeniuk, B., Göransson, P. (2018) Modelling

More information

Response of a Shell Structure Subject to Distributed Harmonic Excitation

Response of a Shell Structure Subject to Distributed Harmonic Excitation Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 7-2016 Response of a Shell Structure Subject to Distributed Harmonic Excitation Rui Cao

More information

Improvement of Low Frequency Sound Absorption of Acoustical Materials

Improvement of Low Frequency Sound Absorption of Acoustical Materials Improvement of Low Frequency Sound Absorption of Acoustical Materials Paresh Shravage, V.V. Phani Kiran, S.K. Jain, K.Desa, S. Raju, The Automotive Research Association of India, Pune-44 Electro-acoustic

More information

The acoustic characterization of porous media and its standards

The acoustic characterization of porous media and its standards The acoustic characterization of porous media and its standards Luc JAOUEN 1, François-Xavier BECOT, Fabien CHEVILLOTTE Matelys, France ABSTRACT While there is a growing number of methods for the acoustic

More information

Sound transmission through triple-panel structures lined with poroelastic materials

Sound transmission through triple-panel structures lined with poroelastic materials Sound transmission through triple-panel structures lined with poroelastic materials Yu Liu a a Department of Mechanical Engineering Sciences University of Surrey Guildford GU2 7XH UK Abstract In this paper

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

More information

COMPARISON OF EXPERIMENT, FINITE ELEMENT AND WAVE BASED MODELS FOR MASS INCLUSIONS IN PORO-ELASTIC LAYERS

COMPARISON OF EXPERIMENT, FINITE ELEMENT AND WAVE BASED MODELS FOR MASS INCLUSIONS IN PORO-ELASTIC LAYERS ICSV14 Cairns Australia 9-12 July, 2007 COMPARISON OF EXPERIMENT, FINITE ELEMENT AND WAVE BASED MODELS FOR MASS INCLUSIONS IN PORO-ELASTIC LAYERS M. R. F. Kidner 1, Kamal Idrisi 2, J. P. Carneal 2 and

More information

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box

Users Manual. Marshall Day Acoustics. Double Panels Contact 33 Details Marshall Day 37.8 Acoustics PO Box New materials can be permanently entered into the materials.txt file. This is a simple ASCII text file. See the section New Materials for details of how to enter new materials. If desired you can send

More information

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES

THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES P-7 THE ACOUSTIC IMPEDANCE MEASUREMNET SYSTEM USING TWO MICROPHONES RYU, YUNSEON BRUEL & KJAER SOUND & VIBRATION MEASUREMENT A/S SKODSBORGVEJ 307 NAERUM 2850 DENMARK TEL : +45 77 41 23 87 FAX : +45 77

More information

The Correlation of the Performance of Duct Lining Materials with Their Normal Incidence Properties

The Correlation of the Performance of Duct Lining Materials with Their Normal Incidence Properties Purdue Univerity Purdue e-pub Publication of the Ray W. Herrick Laboratorie School of Mechanical Engineering 8-005 The Correlation of the Performance of Duct Lining Material with Their Normal Incidence

More information

On measurement of mechanical properties of sound absorbing materials

On measurement of mechanical properties of sound absorbing materials On measurement of mechanical properties of sound absorbing materials Nicolas Dauchez, Manuel Etchessahar, Sohbi Sahraoui To cite this version: Nicolas Dauchez, Manuel Etchessahar, Sohbi Sahraoui. On measurement

More information

Introduction to Acoustics Exercises

Introduction to Acoustics Exercises . 361-1-3291 Introduction to Acoustics Exercises 1 Fundamentals of acoustics 1. Show the effect of temperature on acoustic pressure. Hint: use the equation of state and the equation of state at equilibrium.

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.5 IMPEDANCE CONSIDERATION

More information

An impedance tube measurement technique for controlling elastic behavior of test samples

An impedance tube measurement technique for controlling elastic behavior of test samples An impedance tube measurement technique for controlling elastic behavior of test samples Toshikazu SATOH ; Masateru KIMURA ; Michiyuki YAMAGUCHI, Jason KUNIO INCE Bd. Cert. ; Brüel & Kjær Japan, Japan

More information

The measurement of complex acoustical properties of homogeneous materials by means of impulse response in a plane wave tube

The measurement of complex acoustical properties of homogeneous materials by means of impulse response in a plane wave tube The measurement of complex acoustical properties of homogeneous materials by means of impulse response in a plane wave tube Paolo Bonfiglio, Francesco Pompoli, Nicola Prodi Dipartimento di Ingegneria,

More information

Sound Radiation Modes of a Tire on a Reflecting Surface

Sound Radiation Modes of a Tire on a Reflecting Surface Purdue e-pubs Publications of the Ray W. School of Mechanical Engineering 7-2004 Sound Radiation Modes of a Tire on a Reflecting Surface J Stuart Bolton, bolton@purdue.edu Kiho Yum Follow this and additional

More information

SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING

SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING Zhengqing Liu, Mohammad Fard, Xiaojing Liu RMIT University, School of Engineering (SENG), Melbourne, VIC 3083, Australia email:

More information

Experimental investigation of perforations interactions effects under high sound pressure levels

Experimental investigation of perforations interactions effects under high sound pressure levels Experimental investigation of perforations interactions effects under high sound pressure levels Rostand Tayong and Philippe Leclaire Laboratoire de Recherche en Mécanique et Acoustique Université de Bourgogne,

More information

Notes on Absorption and Impedance Measurements

Notes on Absorption and Impedance Measurements Notes on Absorption and Impedance Measurements Andrew F. Seybert University of Kentucky Lexington, KY 456-18 859-257-6336 x 8645 seybert@engr.uky.edu Applicable Standards. There are two standards 1,2 for

More information

Point Excitation of a Coupled Structural-Acoustical Tire Model with Experimental Verification

Point Excitation of a Coupled Structural-Acoustical Tire Model with Experimental Verification Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 8-2015 Point Excitation of a Coupled Structural-Acoustical Tire Model with Experimental

More information

DESIGN OF MICRO-PERFORATED ABSORBERS (MPA)

DESIGN OF MICRO-PERFORATED ABSORBERS (MPA) DESIGN OF MICRO-PERFORATED ABSORBERS (MPA) Paresh Shravage, Dr. K.V. Desa Electro-acoustic Research Lab, N. Wadia College, Pune-4111 Email: pareshshravage@gmail.com ABSTRACT MPA s are becoming popular

More information

Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials

Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials Laboratory and In Situ Sound Absorption Measurement under a Synthetized Diffuse Acoustic Field: a Case Study on Five Materials Olivier Robin, Celse Kafui Amedin, Alain Berry, Noureddine Atalla, Olivier

More information

INVESTIGATION OF INVERSE ACOUSTICAL CHARACTERIZATION OF POROUS MATERIALS USED IN AIRCRAFT NOISE CONTROL APPLICATION. A Thesis by.

INVESTIGATION OF INVERSE ACOUSTICAL CHARACTERIZATION OF POROUS MATERIALS USED IN AIRCRAFT NOISE CONTROL APPLICATION. A Thesis by. INVESTIGATION OF INVERSE ACOUSTICAL CHARACTERIZATION OF POROUS MATERIALS USED IN AIRCRAFT NOISE CONTROL APPLICATION A Thesis by Apoorv Ravindran Bachelors of Engineering, University of Madras, 2004 Submitted

More information

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS Kento Hashitsume and Daiji Takahashi Graduate School of Engineering, Kyoto University email: kento.hashitsume.ku@gmail.com

More information

A practical device to determine the reflection coefficient of acoustic materials in-situ based on a Microflown and microphone sensor

A practical device to determine the reflection coefficient of acoustic materials in-situ based on a Microflown and microphone sensor A practical device to determine the reflection coefficient of acoustic materials in-situ based on a Microflown and microphone sensor R. Lanoye 1a, H.-E. de Bree b, W. Lauriks a and G. Vermeir a 1 Aspirant

More information

Acoustic design of lightweight cabin walls for cruise ships

Acoustic design of lightweight cabin walls for cruise ships Acoustic design of lightweight cabin walls for cruise ships A. Treviso 1, M. G. Smith 1 1 ISVR Consulting, University of Southampton University Road, SO17 BJ1, Southampton, United Kingdom e-mail: mgs@isvr.soton.ac.uk

More information

A comparison and review of theories of the acoustics of porous materials.

A comparison and review of theories of the acoustics of porous materials. A comparison and review of theories of the acoustics of porous materials. M. R. F. Kidner and C. H. Hansen Acoustics Vibration and Control Group School of Mechanical Engineering The University Of Adelaide

More information

Visualization of Automotive Power Seat Slide Motor Noise

Visualization of Automotive Power Seat Slide Motor Noise Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 9-2014 Visualization of Automotive Power Seat Slide Motor Noise J Stuart Bolton Purdue University,

More information

Porous layer impedance applied to a moving wall: application to the radiation

Porous layer impedance applied to a moving wall: application to the radiation Author manuscript, published in "The Journal of the Acoustical Society of America 121, 1 (27) 26-213" DOI : 1.1121/1.2359233 AIP/123-QED Porous layer impedance applied to a moving wall: application to

More information

Identification of the characteristic parameters of porous media using active control

Identification of the characteristic parameters of porous media using active control Identification of the characteristic parameters of porous media using active control Nadine Sellen, Marie-Annick Galland and Olivier Hilbrunner LaboratoiredeMécanique des Fluides et d Acoustique EcoleCentraledeLyon&UMRCNRS5509

More information

Radiated Sound Power from a Curved Honeycomb Panel

Radiated Sound Power from a Curved Honeycomb Panel Radiated Sound Power from a Curved Honeycomb Panel Jay H. Robinson Ralph D. Buehrle Jacob Klos NASA Langley Research Center, Hampton, VA 23681-2199 Ferdinand W. Grosveld Lockheed Martin Engineering and

More information

Radiated sound power estimates of building elements by means of laser Doppler vibrometry

Radiated sound power estimates of building elements by means of laser Doppler vibrometry Radiated sound power estimates of building elements by means of laser Doppler vibrometry N.B. Roozen, L. Labelle, M. Rychtáriková,2, C. Glorieux, D. Urbán 3, P. Za tko 3, H. Mullner 4 Laboratory of Acoustics,

More information

Modeling of cylindrical baffle mufflers for low frequency sound propagation

Modeling of cylindrical baffle mufflers for low frequency sound propagation Proceedings of the Acoustics 212 Nantes Conference 23-27 April 212, Nantes, France Modeling of cylindrical baffle mufflers for low frequency sound propagation R. Binois a, N. Dauchez b, J.-M. Ville c,

More information

Sound radiation and sound insulation

Sound radiation and sound insulation 11.1 Sound radiation and sound insulation We actually do not need this chapter You have learned everything you need to know: When waves propagating from one medium to the next it is the change of impedance

More information

13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), May 2013, Le Mans, France

13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), May 2013, Le Mans, France 3th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), 2-24 May 23, Le Mans, France www.ndt.net/?id=5532 Biot waves in porous ceramic plates : influence of boundary conditions

More information

REVIEW OF ACOUSTIC CHARACTERISTICS OF MATERIALS USING IMPEDANCE TUBE

REVIEW OF ACOUSTIC CHARACTERISTICS OF MATERIALS USING IMPEDANCE TUBE REVIEW OF ACOUSTIC CHARACTERISTICS OF MATERIALS USING IMPEDANCE TUBE Niresh J. 1, Neelakrishnan S. 1, Subharani S. 2, Kannaian T. 3 and Prabhakaran R. 1 1 Department of Automobile Engineering, PSG College

More information

A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS

A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS A LOW-FREQUENCY METASURFACE ABSORBER BASED ON HELMHOLTZ RESONATORS Honggang Zhao )), Yang Wang ), Dan Zhao ), and Jihong Wen ) email: zhhg963@sina.com Yiu Wai Lam ), Olga Umnova ) ) Vibration and Acoustics

More information

MANUAL FOR WINFLAG, VERSION 2.4 TOR ERIK VIGRAN. Trondheim

MANUAL FOR WINFLAG, VERSION 2.4 TOR ERIK VIGRAN. Trondheim MANUAL FOR WINFLAG, VERSION 2.4 BY TOR ERIK VIGRAN Trondheim 16.05.11 1 CONTENTS 1 Introduction... 4 2 Overview... 5 3 Main features... 5 3.1 New features in version 2.4... 6 4 Brief description of the

More information

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A.

Note that W is the skin surface weight density in units of psf. An equivalent graph in terms of metric units is given in Appendix A. VIBRATION RESPONSE OF A CYLINDRICAL SKIN TO ACOUSTIC PRESSURE VIA THE FRANKEN METHOD Revision H By Tom Irvine Email: tomirvine@aol.com September 16, 2008 Introduction The front end of a typical rocket

More information

The frequency and angular dependence of the absorption coefficient of common types of living plants

The frequency and angular dependence of the absorption coefficient of common types of living plants The frequency and angular dependence of the absorption coefficient of common types of living plants Jevgenjia PRISUTOVA 1 ; Kirill V. HOROSHENKOV 1 ; Jean-Philippe GROBY 2 ; Bruno BROUARD 2 1 1 Department

More information

INTER-NOISE AUGUST 2007 ISTANBUL, TURKEY

INTER-NOISE AUGUST 2007 ISTANBUL, TURKEY INTER-NOISE 7 28-31 AUGUST 7 ISTANBUL, TURKEY Improvement of sound insulation of doors/windows by absorption treatment inside the peripheral gaps Takumi Asakura a, Shinichi Sakamoto b Institute of Industrial

More information

The Low Frequency Performance of Metamaterial Barriers Based on Cellular Structures

The Low Frequency Performance of Metamaterial Barriers Based on Cellular Structures Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 2012 The Low Frequency Performance of Metamaterial Barriers Based on Cellular Structures

More information

ESTIMATION OF SOUND ABSORPTION COEFFICIENTS OF POROUS MATERIALS. Marianna Mirowska, Kazimierz CzyŜewski

ESTIMATION OF SOUND ABSORPTION COEFFICIENTS OF POROUS MATERIALS. Marianna Mirowska, Kazimierz CzyŜewski ICSV14 Cairns Australia 9-1 July, 007 Abstract ESTIMATION OF SOUND ABSORPTION COEFFICIENTS OF POROUS MATERIALS Marianna Mirowska, Kazimierz CzyŜewski ITB - Building Research Institute, Acoustics Department,

More information

Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments

Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments Jinlong Yuan 1, Haibo Chen 2, Qiang Zhong 3, Kongjuan Li 4 Department of Modern mechanics, University of Science

More information

Table of Contents. Preface... 13

Table of Contents. Preface... 13 Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...

More information

Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous Presence of Different Noise Sources

Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous Presence of Different Noise Sources Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1998 Numerical Prediction of the Radiated Noise of Hermetic Compressors Under the Simultaneous

More information

Improvement of the Delany-Bazley and Miki models for fibrous sound-absorbing materials

Improvement of the Delany-Bazley and Miki models for fibrous sound-absorbing materials Acoust. Sci. & Tech. 9, (8) PAPER #8 The Acoustical Society of Japan Improvement of the Delany-Bazley and s for fibrous sound-absorbing materials Takeshi Komatsu Industrial Research Institute of Shizuoka

More information

Experimental Investigation of the Use of Equivalent Sources Model in Room Acoustics Simulations

Experimental Investigation of the Use of Equivalent Sources Model in Room Acoustics Simulations Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 8-216 Experimental Investigation of the Use of Equivalent Sources Model in Room Acoustics

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Architectural Acoustics Session 2aAAb: New Materials for Architectural

More information

ACOUSTIC ABSORBENT PANELS WITH LOW PERFORATION COEFFICIENT.

ACOUSTIC ABSORBENT PANELS WITH LOW PERFORATION COEFFICIENT. paper ID: 48 /p. ACOUSTIC ABSORBENT PANELS WITH LOW PERFORATION COEFFICIENT. J. Pfretzschner, F. Simón, C. de la Colina Instituto de Acústica, Serrano 44, 286 Madrid, España ABSTRACT: Usually, acoustic

More information

IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED PANEL ABSORBERS

IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED PANEL ABSORBERS Proceedings of COBEM 007 Copyright 007 by ABCM 9th International Congress of Mechanical Engineering November 5-9, 007, Brasília, DF IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED

More information

Advance in sound absorption and propagation properties of porous metals under harsh environment conditions

Advance in sound absorption and propagation properties of porous metals under harsh environment conditions Advance in sound absorption and propagation properties of porous metals under harsh environment conditions Bo ZHANG School of mechanical engineering, Ningxia University, China ABSTRACT To my knowledge,

More information

Evaluation of standards for transmission loss tests

Evaluation of standards for transmission loss tests Evaluation of standards for transmission loss tests M. Cassidy, R. K Cooper, R. Gault and J. Wang Queen s University Belfast, School of Mechanical and Aerospace Engineering, Ashby Building, Stranmillis

More information

campus, Kuching, Malaysia Kuching, Malaysia

campus, Kuching, Malaysia Kuching, Malaysia Applied Mechanics and Materials Vol. 315 (2013) pp 577-581 (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.315.577 Experimental determination of Sound Absorption Coefficients

More information

Available online at ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015

Available online at  ScienceDirect. Energy Procedia 78 (2015 ) th International Building Physics Conference, IBPC 2015 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 78 (2015 ) 146 151 6th International Building Physics Conference, IBPC 2015 A combined experimental and analytical approach for the

More information

Sound Propagation in Porous Media

Sound Propagation in Porous Media Final Project Report for ENGN34 Sound Propagation in Porous Media ---Numerical simulation based on MATLAB Name: Siyuan Song Department: Engineering Date: Dec.15 17 1 Name: Siyuan Song Department: Engineering

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 27 NUMERICAL SIMULATION OF THE ACOUSTIC WAVES PROPAGATION IN A STANDING WAVE TUBE PACS: 43.2.Ks Juliá Sanchis, Ernesto 1 ; Segura Alcaraz,

More information

FINITE ELEMENT ANALYSIS OF EFFECTIVE MECHANICAL PROPERTIES, VIBRATION AND ACOUSTIC PERFORMANCE OF AUXETIC CHIRAL CORE SANDWICH STRUCTURES

FINITE ELEMENT ANALYSIS OF EFFECTIVE MECHANICAL PROPERTIES, VIBRATION AND ACOUSTIC PERFORMANCE OF AUXETIC CHIRAL CORE SANDWICH STRUCTURES Clemson University TigerPrints All Theses Theses 8-2013 FINITE ELEMENT ANALYSIS OF EFFECTIVE MECHANICAL PROPERTIES, VIBRATION AND ACOUSTIC PERFORMANCE OF AUXETIC CHIRAL CORE SANDWICH STRUCTURES Hrishikesh

More information

Hydrogeophysics - Seismics

Hydrogeophysics - Seismics Hydrogeophysics - Seismics Matthias Zillmer EOST-ULP p. 1 Table of contents SH polarized shear waves: Seismic source Case study: porosity of an aquifer Seismic velocities for porous media: The Frenkel-Biot-Gassmann

More information

Acoustic Radiation Modes of a Tire on a Reflecting Surface

Acoustic Radiation Modes of a Tire on a Reflecting Surface Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 3-2005 Acoustic Radiation Modes of a Tire on a Reflecting Surface Kiho Yum Purdue University

More information

Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption

Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption L. Nicolas CEGELY - UPRESA CNRS 5005 - Ecole Centrale de Lyon BP63-693 Ecully cedex

More information

EUROPEAN COMMISSION DG RESEARCH

EUROPEAN COMMISSION DG RESEARCH EUROPEAN COMMISSION DG RESEARCH 7 th FRAMEWORK PROGRAMME Collaborative Project - Small or medium-scale focused research project Grant agreement no.: 218508 D9.2a Exterior Acoustics Application Case: SEA

More information

Sound Radiation Of Cast Iron

Sound Radiation Of Cast Iron Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2002 Sound Radiation Of Cast Iron N. I. Dreiman Tecumseh Products Company Follow this and

More information

Suction Muffler Optimisation in a Reciprocating Compressor

Suction Muffler Optimisation in a Reciprocating Compressor Purdue University Purdue e-pubs nternational Compressor Engineering Conference School of Mechanical Engineering 1994 Suction Muffler Optimisation in a Reciprocating Compressor B. Alfano Necchi Compressori

More information

Niigata University, Japan. Kobayasi Institute of Physical Research, Japan. Niigata University, Japan

Niigata University, Japan. Kobayasi Institute of Physical Research, Japan. Niigata University, Japan INTER-NOISE 216 Control of resonance penetration phenomenon in double leaf structure for sound insulation by insertion of small Helmholt resonator and porous material Teruo IWASE 1 ; Satoshi SUGIE 2 ;

More information

Numerical analysis of sound insulation performance of double-layer wall with vibration absorbers using FDTD method

Numerical analysis of sound insulation performance of double-layer wall with vibration absorbers using FDTD method Numerical analysis of sound insulation performance of double-layer wall with vibration absorbers using FDTD method Shuo-Yen LIN 1 ; Shinichi SAKAMOTO 2 1 Graduate School, the University of Tokyo 2 Institute

More information

Underwater Acoustics and Instrumentation Technical Group. CAV Workshop

Underwater Acoustics and Instrumentation Technical Group. CAV Workshop Underwater Acoustics and Instrumentation Technical Group CAV Workshop 3 May 2016 Amanda D. Hanford, Ph.D. Head, Marine & Physical Acoustics Department, Applied Research Laboratory 814-865-4528 ald227@arl.psu.edu

More information

ACOUSTIC TESTS ON ORIGINAL CONCRETE AND INERT MIXTURE MATERIALS

ACOUSTIC TESTS ON ORIGINAL CONCRETE AND INERT MIXTURE MATERIALS ACOUSTIC TESTS ON ORIGINAL CONCRETE AND INERT MIXTURE MATERIALS Franco Cotana 1, Federico Rossi 2, Andrea Nicolini 1 and Sofia Simoni 2 1 University of Perugia Industrial Engineering Department Via G.

More information

Normal Incidence Acoustic Absorption Characteristics of a Carbon Nanotube Forest

Normal Incidence Acoustic Absorption Characteristics of a Carbon Nanotube Forest Normal Incidence Acoustic Absorption Characteristics of a Carbon Nanotube Forest M. Ayub a,, A. C. Zander a, C. Q. Howard a, B. S. Cazzolato a, D. M. Huang b, V. N. Shanov c, N. T. Alvarez c a School of

More information

A methodology for a robust inverse identification of model parameters for porous sound absorbing materials

A methodology for a robust inverse identification of model parameters for porous sound absorbing materials A methodology for a robust inverse identification of model parameters for porous sound absorbing materials T.G. Zieliński Institute of Fundamental Technological Research, Polish Academy of Sciences ul.

More information

A Multi-Physics Study of the Wave Propagation Problem in Open Cell Polyurethane Foams

A Multi-Physics Study of the Wave Propagation Problem in Open Cell Polyurethane Foams A Multi-Physics Study of the Wave Propagation Problem in Open Cell Polyurethane Foams M. Brennan 1, M. Dossi 1, M. Moesen 1 1. Huntsman Polyurethanes, Everslaan 45, 3078 Everberg, Belgium. Abstract Flexible

More information

A PRACTICAL ACOUSTICAL ABSORPTION ANALYSIS OF COIR FIBER BASED ON RIGID FRAME MODELING

A PRACTICAL ACOUSTICAL ABSORPTION ANALYSIS OF COIR FIBER BASED ON RIGID FRAME MODELING A PRACTICAL ACOUSTICAL ABSORPTION ANALYSIS OF COIR FIBER BASED ON RIGID FRAME MODELING Md. Ayub 1 *, Mohd Jailani Mohd Nor 1, Mohammad Hosseini Fouladi 3, Rozli Zulkifli 1, Nowshad Amin 2,4 1 Department

More information

MANUAL FOR NORFLAG, VERSION 4.0 TOR ERIK VIGRAN. Trondheim

MANUAL FOR NORFLAG, VERSION 4.0 TOR ERIK VIGRAN. Trondheim MANUAL FOR NORFLAG, VERSION 4.0 BY TOR ERIK VIGRAN Trondheim 05.11.18 1 CONTENTS 1. Introduction... 4 2. Overview... 5 3. Main features... 5 3.1 New features in version 4.0 (updates from version 3.0)...

More information

Numerical modeling of the primary source in a hemi-anechoic room

Numerical modeling of the primary source in a hemi-anechoic room Numerical modeling of the primary source in a hemi-anechoic room R. Arina 1, K. Völkel 2 1 Politecnico di Torino, Torino, Italy 2 Physikalisch Technische Bundesanstalt, Braunschweig, Germany ABSTRACT An

More information

Vibration Damping Via Acoustic Treatment Attached To Vehicle Body Panels

Vibration Damping Via Acoustic Treatment Attached To Vehicle Body Panels University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations 2015 Vibration Damping Via Acoustic Treatment Attached To Vehicle Body Panels Carlo Gambino University of Windsor Follow

More information

NOVEL SOUND ABSORPTIVE MATERIALS BASED ON ACOUSTIC METAMATERIAL PRINCIPLES

NOVEL SOUND ABSORPTIVE MATERIALS BASED ON ACOUSTIC METAMATERIAL PRINCIPLES NOVEL SOUND ABSORPTIVE MATERIALS BASED ON ACOUSTIC METAMATERIAL PRINCIPLES Gopal Mathur Acoustic Metamaterials, Inc., New York, NY, USA email: gopal@acousticmm.gmail.com Chris Fuller Virginia Tech and

More information