Synthesis of MoO 3 and its polyvinyl alcohol nanostructured film

Similar documents
Polyaniline-SbO 2 Composites: Preparation, Characterization and a c conductivity Study

SYNTHESIS AND CHARACTERIZATION OF POLYVINYL ALCOHOL (PVA) COATED FUNTIONALIZED γ-fe2o3 NANOPARTICALS

Change in physico-mechanical and thermal properties of polyamide / silica nanocomposite film

Synthesis and characterization of nanophased silver tungstate

The characterization of MnO nanostructures synthesized using the chemical bath deposition method

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

Electronic Supporting Information (ESI)

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide

Dry-gel conversion synthesis of Cr-MIL-101 aided by grinding: High surface area high yield synthesis with minimum purification

Improvement of the chemical, thermal, mechanical and morphological properties of polyethylene terephthalate graphene particle composites

A kinetically controlled crystallization process for identifying new co-crystal forms: Fast evaporation of solvent from solutions to dryness

The Effect of Additives on Characteristics of Hydroxyapatite Particles Produced in Flame Reactor

In Situ synthesis of architecture for Strong Light-Matter Interactions

driving agent and study of photocatalytic activity Mohammad Salehi Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran

Novel fluorescent matrix embedded carbon quantum dots enrouting stable gold and silver hydrosols

Permeable Silica Shell through Surface-Protected Etching

MORPHOLOGY AND THERMAL STUDIES OF NICKEL CARBONATE NANOPARTICLES

Sulfur-bubble template-mediated synthesis of uniform porous g-c 3 N 4 with superior photocatalytic performance

Available online Research Article. Hamideh Saravani* and Mehdi Sanjarani V.

Supplementary Information for Self-assembled, monodispersed, flowerlike γ-alooh

Fourier Transform Infrared Spectrophotometry Studies of Chromium Trioxide-Phthalic Acid Complexes

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO

Synthesis and Characterization of Innovative Multilayer, Multi Metal Oxide Thin Films by Modified Silar Deposition Method

College of Mechanical Engineering, Yangzhou University, Yangzhou , China; 2

PREPARATION AND STRUCTURE OF NANOCOMPOSITES BASED ON ZINC SULFIDE IN POLYVINYLCHLORIDE

Urchin-like Ni-P microstructures: A facile synthesis, properties. and application in the fast removal of heavy-metal ions

Synthesis and Characterization of Iron-Oxide (Hematite) Nanocrystals. Z.H. Lee

Two Dimensional Graphene/SnS 2 Hybrids with Superior Rate Capability for Lithium ion Storage

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

ABSTRACT I. INTRODUCTION II. BACKGROUND OF STUDY

Supporting Information:

Supporting information

Supplementary Material

Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

Synthesis and Characterization of Polymeric Composites Embeded with Silver Nanoparticles

Preparation and Characterization of Hydrogels

Supporting Information for: Three-Dimensional Cuprous Oxide Microtube Lattices with High Catalytic

Facile Synthesis and Catalytic Properties of CeO 2 with Tunable Morphologies from Thermal Transformation of Cerium Benzendicarboxylate Complexes

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor

Supporting Information. Synthesis and Upconversion Luminescence of BaY 2

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

SYNTHESIS AND STRUCTURAL PROPERTIES OF POLY ETHYLENE OXIDE COMPLEXED WITH CADMIUM SULFIDE

Sacrifical Template-Free Strategy

Supplementary Information

SYNTHESIS AND CHARACTERIZATION OF COMMON OPAL. Pimthong Thongnopkun, 1,* Sukanya Pramol 2

Supplementary Information

Ethylenediaminetetraacetic Acid-Assisted Synthesis of Nano Antimony Oxide by Microwave Method

A Highly efficient Iron doped BaTiO 3 nanocatalyst for the catalytic reduction of nitrobenzene to azoxybenzene

ScienceDirect. Synthesis of NiO Nanoparticles through Sol-gel Method

Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage

Studies on Furan Polymer Concrete

Supplementary Information

Fabrication of SiO 2, Al 2 O 3, and TiO 2 Microcapsules with Hollow Core and Mesoporous Shell Structure

Functionalized flexible MOF as filler in mixed matrix membranes for highly selective separation of CO 2 from CH 4 at elevated pressures

Fabrication and Characterization of Nanometer-sized AgCl/PMMA Hybrid Materials

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response

Electronic Supplementary Information

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Preparation and characterization of hot-pressed solid polymer electrolytes:

applied as UV protective films

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte

and their Maneuverable Application in Water Treatment

Shape Assisted Fabrication of Fluorescent Cages of Squarate based Metal-Organic Coordination Frameworks

AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes

Supplementary Information

SYNTHESIS OF CADMIUM SULFIDE NANOSTRUCTURES BY NOVEL PRECURSOR

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach

CATALYTIC DECOMPOSITION OF HYDROGEN PEROXIDE ON MANGANESE DIOXIDE NANOPARTICLES AT DIFFERENT PH VALUES

Studies on PVA based nanocomposite Proton Exchange Membrane for Direct methanol fuel cell (DMFC) applications

Radiation Induced Reduction: A Effect and Clean Route to

Supporting Information. Nanoscale Kirkendall Growth of Silicalite-1 Zeolite Mesocrystals with. Controlled Mesoporosity and Size

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core

Novel High Dielectric Constant Nanocomposites of Polyaniline Dispersed with -Fe 2 O 3 Nanoparticles

International Journal of Pure and Applied Sciences and Technology

Supporting Information

Supporting Information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Supporting Information

A novel one-step synthesis of PEG passivated multicolour fluorescent carbon dots for potential biolabeling application

Supplementary Information. Core-Shell Silver/Polymeric Nanoparticles-Based Combinatorial Therapy against Breast Cancer In-vitro

Supporting Information

Synthesis mechanism and gas-sensing application of. nanosheet-assembled tungsten oxide microspheres

Research Article Synthesis and Characterization of Magnetic Nanosized Fe 3 O 4 /MnO 2 Composite Particles

STRUCTURE AND MAGNETIC PROPERTIES OF SiO 2 COATED Fe 2 NANOPARTICLES SYNTHESIZED BY CHEMICAL VAPOR CONDENSATION PROCESS

Synthesis and characterization of hybride polyaniline / polymethacrylic acid/ Fe 3 O 4 nanocomposites

Electronic supplementary information

Synthesis of Polyvinyl Chloride /MMT Nanocomposites and Evaluation of their Morphological and Thermal Properties

CHAPTER 4. SYNTHESIS, CHARACTERIZATION OF TiO 2 NANOTUBES AND THEIR APPLICATION IN DYE SENSITIZED SOLAR CELL

Supporting Information:

Immobilization of BiOX (X=Cl, Br) on activated carbon fibers as

Current efficiency of synthesis magnesium hydroxide nanoparticles via. electrodeposition

Supporting Information for Polybenzimidazolium Salts: A New Class of. Anion-Conducting Polymer

Supporting Information

Two-dimensional dendritic Ag 3 PO 4 nanostructures and their photocatalytic properties

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

/reduced Graphene Oxide (rgo) Composite via Hydrothermal Method. SiO 3. Synthesis of LiFePO 4. /Li 2. Journal of Physics: Conference Series

INFLUENCE OF CLAY ON MECHANICAL PROPERTIES OF POLYVINYL(ALCOHOL)/ MONTMORILLONITE MEMBRANES

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Transcription:

Bull. Mater. Sci., Vol. 28, No. 5, August 2005, pp. 477 481. Indian Academy of Sciences. Synthesis of MoO 3 and its polyvinyl alcohol nanostructured film ARUNKUMAR LAGASHETTY, VIJAYANAND HAVANOOR, S BASAVARAJA and A VENKATARAMAN* Department of Materials Science and Chemistry, Gulbarga University, Gulbarga 585 106, India Appa Institute of Engineering and Technology, Gulbarga 585 101, India MS received 9 December 2004 Abstract. The synthesis of ultrafine MoO 3 through a self-propagating combustion route employing polyethylene glycol as fuel is reported. The precursor molybdenum oxalate is employed in this study for the conversion of the precursor to ultrafine MoO 3 particles. The solvent casting method is adopted for the synthesis of MoO 3 dispersed polyvinyl alcohol nanostructured film (MoO 3 PVA). These synthesized MoO 3 and their composite samples are characterized for their structure, morphology, bonding and thermal behaviour by XRD, SEM, IR and DSC techniques, respectively. The distribution of MoO 3 in polyvinyl alcohol gives a crystalline polymer, a compact structure and an increase in glass transition temperature. Keywords. Combustion method; MoO 3 ; polyvinyl alcohol; nanocomposite. 1. Introduction The research in new synthetic route for the nanoceramics is an integral aspect of material chemistry (Rao 1994). In recent times, development of different synthetic techniques such as soft chemical and sol gel methods have led to the engineering materials (Gopalakrishnan 1995). Now a days microwave assisted synthetic route is becoming a very rapidly developed method (Rao et al 1999a,b; Harish Bhat et al 2000; ChungChen and Huang 2002; Lagashetty et al 2002). New Chimie Douce routes for the synthesis of cobalt ferrite and other ceramics are being continuously investigated (Figlarz 1989; Lee et al 1998; Helen and Kamath 2000). In our earlier work, we have reported the combustion synthesis of nanoparticles using polymer as a fuel (Lagashetty et al 2003; Mallikarjuna et al 2003a,b). These combustion derived nanoparticles act as good adsorbent for heavier metal ions like lead ions (Mallikarjuna and Venkataraman 2003). The adsorption of lead ions on nanoparticles is increased by complexing with thiourea as a ligand (Lagashetty et al 2003; Mallikarjuna et al 2003a,b). Polymer nanocomposites, also presently known as nanostructured materials, are materials in which nanoscopic inorganic particles, typically 10 100 nm in atleast one dimension, are dispersed in an organic polymer matrix in order to dramatically improve the performance properties of the polymer (Mzdujic et al 1998; Jungk and Feldmann 2000; Richard et al 2000). Nanostructured *Author for correspondence (raman_chem@rediffmail.com) materials based on nanosized ceramic have been of great interest to researchers due to their possible applications in refrigeration and high-density information storage (Shull and Bennett 1992; Xiao et al 1993; Sinha 2002). These composites are often prepared by dispersing ceramic materials in a polymer matrix (Castro et al 2000; Cheng et al 2000; Yurekli et al 2001). In this paper we report the synthesis of an important layered ceramic material, MoO 3, through a self-propagating combustion route. This synthetic route can be considered interesting for its simplicity, reproducibility and easy scale up. It is a low-energy reaction and can be carried out in a china dish in an open atmosphere. In this self-propagation combustion reaction, a suitable fuel was found to be poly (ethylene glycol). In our earlier report, we had employed reduction of ammonium molybdate (Mallikarjuna and Venkataraman 2001) and decomposition of molybdate gel (Lagashetty et al 2003; Mallikarjuna et al 2003a,b) to obtain ultrafine dimensions of MoO 3. This work is an extension of our earlier work on the feasibility of employing new synthetic route to the layered materials. The formation of nanostructured materials with interesting electrical, magnetic and thermal properties are obtained when nanoscale metal oxides are incorporated into the polymer matrix (Mallikarjuna et al 2004; Govindraj et al 2004a,b). We also report the solvent casting method for the synthesis of MoO 3 PVA composite film. The as prepared MoO 3 nanoparticles and their nanostructured materials are characterized for their structure employing spectroscopic (infrared), X-ray diffraction (XRD), scanning electron micrograph (SEM) and thermal (DSC) techniques. 477

478 Arunkumar Lagashetty et al 2. Experimental 2.1 Material and methods Ammonium molybdate and oxalic acid employed were of AR grades. Polyethylene glycol (PEG) having molecular weight 4000 and polyvinyl alcohol (PVA) were obtained commercially from M/s Himedia chemicals, Mumbai. Oxygen free double distilled water was used in the present work. The combustion method was adopted for the synthesis of MoO 3 and solvent casting method was adopted for the synthesis of MoO 3 PVA composite. 2.2 Preparation of molybdenum oxalate A mixture of equimolar solutions of ammonium molybdate and oxalic acid was stirred well. The precipitate of molybdenum oxalate obtained was filtered through sintered glass crucible and washed with cold distilled water and finally washed with dry acetone and then dried under vacuum. 2.3 Synthesis of nanosized MoO 3 The above prepared molybdenum oxalate was mixed with polyethylene glycol in the weight ratio 1 : 5 and ground well in a pestle and mortar (Venkataraman et al 2001). The resultant solid was placed in a crucible and heated in presence of atmospheric air. It was observed that initially polyethylene glycol melted, then frothed and finally ignited to form MoO 3. On cooling to room temperature no trace of carbon impurities was observed in the MoO 3 residue. XRD, SEM and IR studies characterized the synthesized MoO 3. 2.4 Synthesis of MoO 3 dispersed polyvinyl alcohol (MoO 3 PVA) nanostructured film The method employed for the synthesis of MoO 3 PVA composite was a solvent casting method. A known weight (4 g) of polyvinyl alcohol was dissolved in double distilled water and required amount (0 1 g) of MoO 3 (10 wt%) was added and stirred well in a magnetic hot plate. The whole mass was transferred to a clean petridish and kept in a vacuum desiccator for complete evaporation of water. A well dispersed thin film of MoO 3 inserted PVA was obtained. The prepared film was free from air bubbles and with uniformly dispersed MoO 3 particles. This nanostructured material was then characterized by XRD, SEM, IR and thermal techniques. The powder X-ray diffraction pattern was obtained from GEOL JDX-8P X-ray diffractometer using CoKα radiation. The morphology of the ceramics as well as polymer nanostructured film were obtained from Leica Cambridge-440 scanning electron microscope. The infrared spectra of nanoceramics were recorded on a Perkin-Elmer FTIR spectrometer [model 100] in the range 4000 300 cm 1. Thermal traces were obtained from Mettler Toledo Star instrument. 3. Results and discussion 3.1 X-ray diffraction Figure 1 shows the XRD pattern of as synthesized MoO 3. This sample produces a diffraction pattern with large number of peaks. The d-spacing values of the sample match well with the standard MoO 3 file (JCPDS 5-508). Figure 2 shows the XRD pattern of pure polyvinyl alcohol. The pattern shows no intense peaks throughout the spectrum indicating amorphous nature of the sample. Figure 3 shows the XRD pattern of as synthesized MoO 3 PVA nanostructured film. Sharp and highly intense peaks are observed. Some additional sharp peaks are also observed when compared with pure polyvinyl alcohol (figure 2). We also observe some MoO 3 peaks in the composite spectrum. On comparison with figures 1 and 2, the formation of partially crystalline nanostructured film is understood. 3.2 Scanning electron micrograph The surface morphology of as synthesized MoO 3 and its nanostructured film is studied by scanning electron micrograph images. Figures 4a,b show the SEM images of as synthesized MoO 3 under low and high resolution, respectively. From these images various shapes and sizes of the particles are observed. There is aggregation of particles as well as particle agglomerates. However, under high resolution formation of a compact structure is observed. Figures 5a,b show the SEM images of as synthesized MoO 3 PVA nanostructured film at low and high magni- 2.5 Characterization Figure 1. XRD pattern of as synthesized MoO 3.

Synthesis of MoO 3 and its polyvinyl alcohol nanostructured film 479 fication, respectively. From this image it is observed that polyvinyl alcohol has irregular shaped MoO 3 particles dispersed in its matrix. However, on high resolution clear fine dispersion of MoO 3 particle in the polymer matrix is observed. Figure 2. XRD pattern of pure polyvinyl alcohol. 3.3 Infrared study FTIR studies have been performed to understand the possible chemical interactions between MoO 3 and PVA. Table 1 gives vibrational frequencies of as synthesized MoO 3 and its PVA composite. Two peaks at 440 and 555 cm 1 correspond to metal oxygen (M O) bond. The bands in the range of 3600 3100 cm 1 (relating to antisymmetric and symmetric OH stretching) are observed in the present case and might be assigned to water of hydration. Hydrates also absorb in the region 1670 1600 cm 1 (relating to OH bending) (Miller and Walkins 1952). This latter band can be taken as another important means to identify water of crystallization and it has been found very useful in the elucidation of crystal structure. A broad peak observed at 1600 cm 1 in the present case corresponds to bending mode. The clear observation is because of some additional peaks and shifts in frequencies as compared to pure MoO 3. We also observe peaks below 1000 cm 1 due to Mo O vibrations. This confirms the presence of MoO 3 particles present as dispersed materials inside the polyvinyl alcohol matrix. 3.4 Thermal study Figure 3. XRD pattern of as synthesized MoO 3 PVA composite. Figure 6 shows the DSC trace of pure polyvinyl alcohol. In this trace there are two endothermic peaks observed at 100 C and 190 C. The first endothermic peak corresponds to the removal of hydrated water and the second endothermic peak corresponds to glass transition of polyvinyl alcohol. After that there is a broad endo/exo peak observed due to decomposition of the sample. The end temperature of this could not be determined because of experimental limitation. Figure 7 shows the DSC trace of MoO 3 PVA composite. From this trace we observe the presence of two Figure 4. (a b) SEM of as synthesized MoO 3 at low and high magnifications.

480 Arunkumar Lagashetty et al Figure 5. (a b) SEM of as synthesized MoO 3 PVA composite at low and high magnifications. Table 1. Vibrational frequencies of as synthesized MoO 3 and its composite with polyvinyl chloride. Sl. no. Vibrational frequencies of MoO 3 Vibrational frequencies of MoO 3 PVA composite 1 440 452 2 555 560 3 1600 1155 4 3250 1505 5 2000 6 2610 7 2905 *All values are in cm 1. Figure 7. DSC of as synthesized MoO 3 PVA composite. Figure 6. DSC of pure polyvinyl alcohol. endothermic peaks, which are widely separated and shifted towards high temperature when compared with that of pure polyvinyl alcohol. The first endothermic peak at 91 C corresponds to removal of hydrated water and second endothermic peak at 200 C is due to glass transition temperature, T g, of polyvinyl alcohol. On comparing both the thermograms, we observe a shift of 10 C temperature in glass transition temperature of polymer composite compared to the pure polyvinyl alcohol. The shift in T g to higher temperature possibly indicates better chain entanglement of the polymer with the metal oxide. A detailed study with varying compositions of the MoO 3 content is under progress, which then will help in confirming the chain entanglement of the polymer matrix with MoO 3. 4. Conclusions The combustion method for the synthesis of MoO 3 is simple and easy to scale up; also this method may be

Synthesis of MoO 3 and its polyvinyl alcohol nanostructured film 481 applied for the synthesis of other layered ceramic materials. The distribution of MoO 3 particles is found to be uniform throughout the polyvinyl alcohol matrix giving a crystalline and increased thermal stability for the films. Better chain entanglement of the polymer with MoO 3 was noticed with increase in the glass transition temperature when compared to pure polyvinyl alcohol. References Castro C, Millan A and Palocio F 2000 J. Mater. Chem. 10 1945 Cheng K B, Ramakrishna S and Lee K C 2000 Composites Part A 31 1039 ChungChen Y and Huang C 2002 Mater. Sci. Engg. A334 250 Figlarz M 1989 Prog. Solid State Chem. 19 1 Gopalakrishnan J 1995 Chem. Mater. 7 1265 Govindraj B, Sastry N V and Venkataraman A 2004a J. Appl. Polym. Sci. 92 1527 Govindraj B, Sastry N V and Venkataraman A 2004b J. Appl. Polym. Sci. 93 778 Harish Bhat M, Chakravarthy B P, Ramakrishnan P A, Levasseur A and Rao K J 2000 Bull. Mater. Sci. 23 461 Helen G and Kamath P V 2000 Chem. Mater. 12 1195 Jungk H O and Feldmann C 2000 J. Mater. Res. 15 2244 Lagashetty A, Havanoor V and Venkataraman A 2002 Paper presented at the international symposium on Recent advances in inorganic materials IIT, Mumbai Lagashetty A, Mallikarjuna N N and Venkataraman A 2003 Indian J. Chem. Technol. 10 63 Lee J G, Park J Y and Kim C S 1998 J. Mater. Sci. 33 3965 Mallikarjuna N N and Venkataraman A 2001 Indian J. Engg. & Mater. Sci. 8 303 Mallikarjuna N N and Venkataraman A 2003 Talanta 60 139 Mallikarjuna N N, Govindraj B, Lagashetty A and Venkataraman A 2003a J. Therm. Anal. & Cal. 71 915 Mallikarjuna N N, Lagashetty A and Venkataraman A 2003b J. Therm. Anal. & Cal. 74 819 Mallikarjuna N N, Venkataraman A and Aminabhavi T M 2004 J. Appl. Polym. Sci. 94 2551 Miller F A and Walkins C H 1952 J. Anal. Chem. 24 1253 Rao C N R 1994 Chemical approaches to the synthesis of inorganic materials (New Delhi: Wiley Eastern Limited) Rao K J, Vaidhyanathan B, Ganguli M and Ramakrishnan P A 1999a Chem. Mater. 11 82 Rao K J, Ramakrishnan P A and Gadagkar R 1999b J. Solid State Chem. 148 100 Richard J, Spontak P and Patel N P 2000 Current Opinion Colloid Interf. Sci. 5 334 Shull R D and Bennett L H 1992 Nanostructured Mater. 1 83 Sinha R 2002 Outlines of polymer technology (New Delhi: Prentice Hall of India Private Limited) p. 93 Venkataraman A, Hiremath V A, Date S K and Kulkarni S D 2001 Bull. Mater. Sci. 24 617 Xiao T D, Zhang Y D, Strutt P R, Budric J I, Mohan K and Gonsalves K E 1993 Nanostructured Mater. 2 285 Yurekli K, Krishnamoorti R, Tse M F, Mcelrath K O, Tsou A H and Wang H C 2001 J. Polym. Sci. Part B Polym. Phys. 39 256 Zdujic M, Jovalekic C, Karanovic Lj, Mitric M, Poleti D and Skala D 1998 Mater. Sci. Engg. A245 109