Unitary Process Discrimination with Error Margin

Similar documents
Ph 219/CS 219. Exercises Due: Friday 3 November 2006

Entanglement Measures and Monotones

Introduction to Quantum Information Hermann Kampermann

1. Basic rules of quantum mechanics

arxiv: v3 [quant-ph] 6 Sep 2014

Asymptotic Pure State Transformations

Ph 219/CS 219. Exercises Due: Friday 20 October 2006

MP 472 Quantum Information and Computation

Lecture 4: Postulates of quantum mechanics

Schur-Weyl duality, quantum data compression, tomography

Optimal discrimination of quantum measurements. Michal Sedlák. Department of Optics, Palacký University, Olomouc, Czech Republic

Ensembles and incomplete information

CS/Ph120 Homework 4 Solutions

Density Operators and Ensembles

Distinguishing different classes of entanglement for three qubit pure states

5. Communication resources

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

Quantification of Gaussian quantum steering. Gerardo Adesso

Distinguishing multi-partite states by local measurements

Lecture 4: Purifications and fidelity

Introduction to Quantum Mechanics

Distinguishing multi-partite states by local measurements

CS286.2 Lecture 13: Quantum de Finetti Theorems

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

arxiv: v2 [quant-ph] 26 Mar 2012

Transmitting and Hiding Quantum Information

The Principles of Quantum Mechanics: Pt. 1

Properties of Conjugate Channels with Applications to Additivity and Multiplicativity

Entanglement Manipulation

Entanglement: concept, measures and open problems

arxiv: v2 [quant-ph] 11 Jul 2017

Theory of Quantum Entanglement

Quantum theory without predefined causal structure

Compression and entanglement, entanglement transformations

Probabilistic exact cloning and probabilistic no-signalling. Abstract

Maximal vectors in Hilbert space and quantum entanglement

Structure of Unital Maps and the Asymptotic Quantum Birkhoff Conjecture. Peter Shor MIT Cambridge, MA Joint work with Anand Oza and Dimiter Ostrev

2. Introduction to quantum mechanics

arxiv: v2 [quant-ph] 21 Oct 2013

arxiv: v5 [quant-ph] 8 Mar 2016

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner

Quantum Teleportation Pt. 3

arxiv: v3 [quant-ph] 5 Jun 2015

Basic Notation and Background

Quantum Entanglement- Fundamental Aspects

Quantum correlations by tailored dissipassion. Natalia Korolkova, St Andrews, UK R. Tatham, N. Quinn, L. Mišta

CS286.2 Lecture 15: Tsirelson s characterization of XOR games

Quantum Data Compression

Chapter 5. Density matrix formalism

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Quantum Entanglement and Measurement

Quantum Nonlocality Pt. 4: More on the CHSH Inequality

The Minimax Fidelity for Quantum Channels: Theory and Some Applications

Quantum Noise. Michael A. Nielsen. University of Queensland

Classical and Quantum Channel Simulations

CS120, Quantum Cryptography, Fall 2016

Information quantique, calcul quantique :

Entanglement Measures and Monotones Pt. 2

arxiv:quant-ph/ v1 19 Mar 2006

MATH36001 Generalized Inverses and the SVD 2015

Quantum and non-signalling graph isomorphisms

Local cloning of entangled states

Quantum Hadamard channels (I)

Compression, Matrix Range and Completely Positive Map

Squashed entanglement

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

arxiv: v1 [quant-ph] 9 Jan 2017

Quantum state discrimination with post-measurement information!

Limitations on separable measurements by convex optimization

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2

(Quantum?) Processes and Correlations with no definite causal order

On the Relation between Quantum Discord and Purified Entanglement

Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario

Entanglement: Definition, Purification and measures

Homework 3 - Solutions

Optimal state reconstructions

Lectures 1 and 2: Axioms for Quantum Theory

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

Quantum information and quantum computing

Linear Algebra Massoud Malek

Math 407: Linear Optimization

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Multipartite entanglement in fermionic systems via a geometric

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO

. Here we are using the standard inner-product over C k to define orthogonality. Recall that the inner-product of two vectors φ = i α i.

CHAPTER 6. Representations of compact groups

The Framework of Quantum Mechanics

Tensors and complexity in quantum information science

On PPT States in C K C M C N Composite Quantum Systems

Free probability and quantum information

PACS Nos a, Bz II. GENERALIZATION OF THE SCHMIDT DECOMPOSITION I. INTRODUCTION. i=1

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2

Port-based teleportation and its applications

Principal Component Analysis

Principles of Quantum Mechanics Pt. 2

Unambiguous Quantum State Discrimination

The Postulates of Quantum Mechanics

Solutions Final exam 633

Entanglement Dynamics for the Quantum Disordered XY Chain

Transcription:

Unitary Process Discrimination with Error Margin DEX-SMI Workshop on Quantum Statistical Inference March 2-4, 2009, National Institute of Informatics (NII), Tokyo A. Hayashi (Fukui) T. Hashimoto (Fukui), M. Horibe (Fukui) and M. Hayashi (Tohoku)

Unitary process discrimination with error margin unitary process input output U U U... 1 2 3 φ> U φ>= φ > i i State discrimination { φ i U i φ } Inconclusive result ( I don t know ) is allowed Maximize the success probability P success Margin on error probability P error < m m = 1 : minimum-error discrimination m = 0 : unambiguous discrimination Two solvable cases: {U 1, U 2 } (two unitary processes) {T g } g G (T g is a projective representation of a finite group G)

Two unitary processes {U 1, U 2 } First, fix input φ Two-state discriminaiton ρ 1 = φ 1 φ 1, φ 1 U 1 φ ρ 2 = φ 2 φ 2, φ 2 U 2 φ We assume the same occurrence probabilities POVM {E µ } µ=1,2,3 E 1 for ρ 1, E 2 for ρ 2, E 3 E? for I don t know, Phys. Rev. A78, 012333(2008) by A. Hayashi, T. Hashimoto and M. Horibe Joint probabilities The state is ρ a and measurement outcome is µ: P ρa,e µ = tr [E µ ρ a ]

Strong error-margin conditions Success probability to be optimized ) p = 1 2 (P ρ1,e 1 + P ρ2,e 2 Margin m on conditional error probabilities P ρ2 E 1 = P ρ1 E 2 = tr [E 1 ρ 2 ] tr [E 1 ρ 1 ] + tr [E 1 ρ 2 ] m tr [E 2 ρ 1 ] tr [E 2 ρ 1 ] + tr [E 2 ρ 2 ] m m = 1 m = 0 Minimum error discrimination p = 1 2 (1 + ) 1 φ 1 φ 2 2 Unambiguous discrimination p = 1 φ 1 φ 2

Optimization problem Optimization maximize: p = 1 ( ) tr [E 1 ρ 1 ] + tr [E 2 ρ 2 ], 2 subject to: E 1 0, E 2 0, Equal occurrence probabilities Semidefinite programming E 1 + E 2 1, ( ) tr [E 1 ρ 2 ] m tr [E 1 ρ 1 ] + tr [E 1 ρ 2 ], ( ) tr [E 2 ρ 1 ] m tr [E 2 ρ 1 ] + tr [E 2 ρ 2 ].

Bloch vector representation In the 2-dim subspace = < φ 1, φ 2 > Bloch vector representation ρ a = 1 + n a σ, E µ = α µ + β 2 µ σ Optimization in terms of parameters {α µ, β µ } maximize: p = 1 ) (α 1 + β 2 1 n 1 + α 2 + β 2 n 2, subject to: α 1 β 1, α 2 β 2, α 1 + α 2 + β 1 + β 2 1, ( ) α 1 + β 1 n 2 m 2α 1 + β 1 (n 1 + n 2 ), ( ) α 2 + β 2 n 1 m 2α 2 + β 2 (n 1 + n 2 ).

Optimal success probability p = ) A m (1 φ 1 φ 2, (0 m m c ), 1 2 (1 + ) 1 φ 1 φ 2 2, (m c m 1), where m c = 1 2 ( ) 1 1 φ 1 φ 2 2, and A m is an increasing function of error margin and defined to be A m = 1 m ( (1 2m) 2 1 + 2 ) m(1 m).

Success probability p (m) 1 p : success probability ο 0.8 p m 0.6 0.4 0.2 p u 0 0 0.1 0.2 0.3 0.4 0.5 m c p m : minimum error discrimination p u : unambiguous discrimination m : error margin

Strong and weak error-margin conditions I Strong conditions P ρ2 E 1 m, P ρ1 E 2 m ) p = A m (1 φ 1 φ 2, A m Weak conditions p = P E1,ρ 2 + P E2,ρ 1 m (0 m m c ) 1 m ( (1 2m) 2 1 + 2 ) m(1 m) p = ( m ) 2, + 1 φ1 φ 2 (0 m m c ) POVM E 1, E 2, E 3 : rank 0 or 1

Strong and weak error-margin conditions II 1 p : success probability ο 0.8 p m 0.6 0.4 0.2 Weak Strong p u 0 0 0.1 0.2 0.3 0.4 0.5 m c m : error margin p m : minimum error discrimination p u : unambiguous discrimination

Optimal discrimination by LOCC Local Operations and Classical Communication (LOCC) Bipartite state?? Local operations Alice Classical communication Bob

Two Orthogonal pure states Two orthogonal pure states can be perfectly discriminated by LOCC:(Local Operations and Classical Communication) (Walgate et al., 2000) Example φ 1 = 1 2 ( 0 0 + 1 1 ) = 1 2 ( + + + ) φ 2 = 1 2 ( 0 0 1 1 ) = 1 2 ( + + + ) where, ± = 1 2 ( 0 ± 1 ) In general, if φ 1 φ 2 = 0 { φ1 = i i ξ i φ 2 = i i η i, where { i : Orthonormal basis ξ i η i = 0

Local discrimination of nonorthogonal states Local discrimination Two non-orthogonal pure states (generally entangled) can be optimally discriminated by LOCC. Discrimination with minimum error: Virmani et al. (2001) Error margin : m c m 1, m c = 1 2 Unambiguous discrimination: Chen et al. (2001,2002), Ji et al. (2005) Error margin : m = 0 (1 φ 1 φ 2 2 ) We can show For any error margin, two pure states can be optimally discriminated by LOCC.

Three-element POVM of rank 0 or 1 Optimal POVM of discrimination with error margin {E 1, E 2, E 3 } : each element is of rank 0 or 1 Theorem Let V be a two-dimensional subspace of a multipartite tensor-product space H, and P be the projector onto the subspace V. Then, for any three-element POVM {E 1, E 2, E 3 } of V with every element being of rank 0 or 1, there exists a one-way LOCC POVM {E L 1, E L 2, E L 3 } of H such that E µ = PE L µ P (µ = 1, 2, 3). Proj. Op. P {E,E,E } rank 0 or 1 1 2 3 2-dim. subspace V L L L {E,E,E } : LOCC 1 2 3 Multi partite H E = P E P µ L µ

Unitary process {U 1, U 2 } discrimination I Remark: The optimal success probability is attained by a pure-state input, since P pure (m) is concave with respect to m Discrimination between states { φ 1, φ 2 } P max (m, φ 1, φ 2 ) = f (m, φ 1 φ 2 ) ( m ) 2, + 1 s 0 m < 1 2 (1 ) 1 s 2 f (m, s) = 1 2 (1 + ) 1 s 2 1, 2 (1 ) 1 s 2 m 1 f (m, s) is decreasing with respect to s Discrimination between processes {U 1, U 2 } Pmax pure (m) = max P max(m, φ 1, φ 2 ) = f (m, µ) φ µ min φ φ U + 1 U 2 φ

Discrimination between processes {U 1, U 2 } II 1 È Ñ Ü Ñµ ½ ¾ ½ 0.8 Ô½ ¾ 0.6 0.4 ½ 0.2 0 0 0.2 0.4 0.6 0.8 1 Ñ ½ ¾ m : error margin µ min φ φ U + 1 U 2 φ ½ Ô ½ ¾ Ñ

Minimum fidelity µ µ min φ U 1 + U 2 φ = min φ q a 0, P a qa=1 where {e iθ 1, e iθ 2,..., e iθ d } are eigenvalues of U + 1 U 2 d q a e iθ a a=1 µ µ=0 µ>0

Unitary processes {T g } g G : T g is a unitary projective repersentation of a finite group G Unitary projective representation T g T h = c g,h T gh (T + g = T 1 g, c g,h = 1, g, h G) where {c g,h } is a factor set. State discrimination { P φg = 1 } G, φ g = T g φ g G where G is the order of G.

Covariant measurement Covariant POVM Optimal POVM {E g, E? } can be assumed covariant: T g E? T + g = E?, T g E h T + g = E gh maximize: P = φ E 1 φ subject to: E 1 0, Optimization with covariant POVM g G T g E 1 T + g 1 weak error-margin condition P = φ T + h E 1T h φ m h( 1)

If {T g } is irreducible (I) By Schur s lemma T g E 1 T g + g G = G d tr [E 1] 1 (d = dimension) Completeness of POVM : g G T g E 1 T + g 1 P = tr [E 1 ρ] tr [E 1 ] d G Error-margin condition : g( 1) tr [ T + g E 1 T g ρ ] m P = tr [E 1 ρ] tr [E 1 ] m G d 1

If {T g } is irreducible (II) Maximal success probability { m G P max (m) = 1, (0 m m c) d G, (m c m 1) m c = 1 d G È Ñ Ü Ñµ ¼ Ñ ½ ½ Ñ

General case For any E 1 0 κ T g E 1 T g + E 1, κ min(m r, d r )d r G g G r G = order of G, r = irreducible representation d r = dimension of r, m r = multiplicity of r (Proof: orthogonality of representation matrices and Schwarz inequality) Note: r d r d r G = 1 (Plancherel measure) Completeness of POVM : g G T g E 1 T g + 1 P = tr [E 1 ρ] tr [E 1 ] κ Error-margin condition : g( 1) tr [ T + g E 1 T g ρ ] m P = tr [E 1 ρ] tr [E 1 ] κ 1 κ m

Maximal success probability P max (m) = r(m r 1) { κ 1 κ m, (0 m m c) κ, (m c m 1) m c = 1 κ κ = min(m r, d r )d r G r Note : With a sufficient large ancilla, κ dr 2 G dr 2 = 1 (Plancherel measure) G r Optimal input and POVM φ = 1 κ r min(m r,d r ) a=1 E 1 = P max (m) φ φ d r r, a, a G

Example I : Super dense coding in d dimension Define unitaries T mn on C d T mn = X m Z n (m, n = 0, 1,..., d 1) X = Z = d 1 a a + 1, ( σ x ) a=0 d 1 e i 2π d a a a, ( σ z ) a=0 XZ = e i 2π d ZX {T mn } is an irreducible projective representation of G = Z d Z d T mn T m n = e i 2π d nm T m+m,n+n For C d C d (ancilla), d r = d, m r = d, G = d 2

Maximum success probability of {T nm } P max (m) = { d d d m, (0 m m c) d d, (m c m 1) d = min(d, d), m c = 1 d d È Ñ Ü Ñµ Ñ Ò ¼ µ Ñ ½ Ñ Ò ¼ µ ¼ ½ Ñ

Example II : Color coding (symmetric group S N ) Consider (C d ) N Permutation of N subsystems : T σ (σ S N ) on (C d ) N {T σ } σ SN is a representation of S N Korff and Kempe (PRL 2005) A. Hayashi, T. Hashimoto, and M. Horibe (PRA 2005) Alice : N=3 boxes, d=2 quantum colors (0 or 1) X X (1) (2) (3) Sloppy Bob permutes the boxes (3) (1) (2) Alice guesses which box contains which object

N : number of boxes d : number of colors N = 3, d = 2 N = 4, d = 2 When N P classical = 1 2, P = P ancilla = 5 6 P classical =?, P = 13 24, Pancilla = 14 24 P 1 if d N e (Korff and Kempe) P ancilla 1 if d 2 N (HHH)

Strong error-margin condition Error-margin condition g( 1) P E1 tr [ ρt g E 1 T g + ] g tr [ ρt g E 1 T g + ] m tr [ρe 1 ] κtr [ ρ g T g E 1 T + g ] κ 1 m tr [ρe 1] Maximum success probability { P max 0, (0 m < mc ) (m) = κ, m c m 1 m c = 1 κ, κ = r min(m r, d r )d r G

Summary Unitary process discrimination with error margin Two-unitary case, {U 1, U 2 }, solved Group representation case, {T g } g G, solved Unambiguous discrimination (m = 0) : P max (0) = 0 or 1 Weak error margin : P max (m) is linear in m for m m c Strong error margin : P max (m) = 0 for m m c Many applications (super dense coding, color coding, ) Ancilla Entangled input state for multiple uses of the process

Appendix 1 (The strong condition is stronger than the weak condition) P = P E1,ρ 2 + P E2,ρ 1 = P ρ2 E 1 P E1 + P ρ1 E 2 P E2 m(p E1 + P E2 ) m