DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University

Similar documents
Γ(h)=0 h 0. Γ(h)=cov(X 0,X 0-h ). A stationary process is called white noise if its autocovariance

14 Autoregressive Moving Average Models

White noise processes

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Some Basic Information about M-S-D Systems

DYNAMIC ECONOMETRIC MODELS Vol. 7 Nicolaus Copernicus University Toruń Piotr Fiszeder Nicolaus Copernicus University in Toruń

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag.

Section 4 NABE ASTEF 232

Lecture Notes 2. The Hilbert Space Approach to Time Series

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

Vehicle Arrival Models : Headway

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Modeling Economic Time Series with Stochastic Linear Difference Equations

Y 0.4Y 0.45Y Y to a proper ARMA specification.

10. State Space Methods

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing.

Chapter 2. First Order Scalar Equations

Testing for a Single Factor Model in the Multivariate State Space Framework

BOX-JENKINS MODEL NOTATION. The Box-Jenkins ARMA(p,q) model is denoted by the equation. pwhile the moving average (MA) part of the model is θ1at

OBJECTIVES OF TIME SERIES ANALYSIS

The Brock-Mirman Stochastic Growth Model

Math Final Exam Solutions

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

Let us start with a two dimensional case. We consider a vector ( x,

Stationary Time Series

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

STAD57 Time Series Analysis. Lecture 17

STAD57 Time Series Analysis. Lecture 17

Box-Jenkins Modelling of Nigerian Stock Prices Data

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size.

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Generalized Least Squares

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance

Let. x y. denote a bivariate time series with zero mean.

Generalized Chebyshev polynomials

How to Deal with Structural Breaks in Practical Cointegration Analysis

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3

Class Meeting # 10: Introduction to the Wave Equation

ST4064. Time Series Analysis. Lecture notes

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

Online Appendix to Solution Methods for Models with Rare Disasters

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

2. Nonlinear Conservation Law Equations

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4.

ECE 2100 Circuit Analysis

Two Coupled Oscillators / Normal Modes

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

For example, the comb filter generated from. ( ) has a transfer function. e ) has L notches at ω = (2k+1)π/L and L peaks at ω = 2π k/l,

Regular Variation and Financial Time Series Models

Chapter 3, Part IV: The Box-Jenkins Approach to Model Building

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

Distribution of Estimates

An Introduction to Malliavin calculus and its applications

Differential Equations

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Directional Tubular Surfaces

CHAPTER 2 Signals And Spectra

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

GMM - Generalized Method of Moments

After the completion of this section the student. Theory of Linear Systems of ODEs. Autonomous Systems. Review Questions and Exercises

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

Linear Dynamic Models

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

References are appeared in the last slide. Last update: (1393/08/19)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Stability and Bifurcation in a Neural Network Model with Two Delays

This document was generated at 1:04 PM, 09/10/13 Copyright 2013 Richard T. Woodward. 4. End points and transversality conditions AGEC

Optimality Conditions for Unconstrained Problems

Matlab and Python programming: how to get started

System of Linear Differential Equations

= ( ) ) or a system of differential equations with continuous parametrization (T = R

Chapter 6. Systems of First Order Linear Differential Equations

Power of Random Processes 1/40

Lie Derivatives operator vector field flow push back Lie derivative of

Math 315: Linear Algebra Solutions to Assignment 6

POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

Testing the Random Walk Model. i.i.d. ( ) r

A generalization of the Burg s algorithm to periodically correlated time series

DYNAMIC ECONOMETRIC MODELS Vol. 4 Nicholas Copernicus University Toruń Jacek Kwiatkowski Nicholas Copernicus University in Toruń

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen

Echocardiography Project and Finite Fourier Series

Transcription:

DYNAMIC ECONOMETRIC MODELS vol.. - NICHOLAS COPERNICUS UNIVERSITY - TORUŃ 996 Józef Sawicki and Joanna Górka Nicholas Copernicus Universiy ARMA represenaion for a sum of auoregressive processes In he ime analysis essenially hree represenaions are considered: an ARMA represenaion, a represenaion in he sae space and a specral represenaion. The ARMA represenaion is he mos common mus frequenly one and is very ofen applied. The special cases of his represenaion, i. e., AR and MA models are very ofen used in he modeling of economic processes is no. The ARMA models is creaed as fundamenal in building of forecass in so called he Box-Jenkins mehod. In his aricle some problems of he ARMA represenaion will be presened. form Definiion. A saionary mulidimensional process Y of he Y = H ε, Eε = 0, Vε = Ω () j j j= 0 has he ARMA(p,q) represenaion, only if i can be wrien in he form of differenia equaion where Φ( LY ) = Θ( L) ε, ()

p Φ( L) = Φ + Φ L+... + Φ L, Φ =, Φ 0 0 p 0 q Θ( L) = Θ + Θ L+... + Θ L, Θ =, Θ 0 0 q 0 p q (3) where Φ( z) = 0 and Θ( z) = 0 have all he roos ouside he uni circle. The ARMA represenaion is no univocal. This problem is illusraed below on an examples. and where Example. Le Φ( LY ) = Θ( L) ε, Φ ( LY ) = Θ ( L) ε, (4) * * * * Φ ( L) = AL ( ) Φ( L), Θ ( L) = AL ( ) Θ( L) (5) be a represenaion of he same sochasic process. Example. The process MA() Y ε ε = Θ (6) can be wrien in he form If Θ ( + Θ LY ) = ( Θ L ) ε (7) = 0 hen he process MA() may be presened in he form of AR(). I is possible, because he marix equaion Θ = 0 has a soluion. Taking ino accoun he above a minimal represenaions of ARMA models should be considered. Definiion. A saionary process Y has a minimal represenaion of ARMA ype, if polynomials Φ( L) and Θ( L ) do no have common roos. Below he imporan heorem of minimal represenaion is quoed according o Beguin, Gourieroux, Monfor (980). This heorem is reaed as a pracical way in verifying he models of sochasic processes and in idenifying he ime series as well.

Theorem. A saionary process Y has a minimal represenaion of ARMA ype if and only if where (,) ij= 0 i p j q ( pq, ) 0 (8) ( p, q) 0, (i,j)=dea(i,j) (9) A(i,j) is he marix of auocovariance coefficien γ(h). γ( j+ ) γ( j+ )... γ( j+ i+ ) () j ( j )... ( j i) Aij (,) = γ γ + γ +............ γ( j+ i) γ( j+ i)... γ( j+ ) (0) On he ground of (i,j) values he array (so-called C-array) is buil, which is used o deermine he orders p and q of an ARMA model. If a process has he minimal ARMA represenaion, hen he C-array has he form: Table. i\j 0... q- q q+... 0 x x x... x x x... x x x... x x x... x x x... x x x.............................. p- x x x... x x x x p x x x... x 0 0 0 p+ x x x... x 0 0 0............... x 0 0 0 where 0 means zero value of deerminan of he marix A(i,j), where x means non-zero value of deerminan of he marix A(i,j).

The mehod presened above allows o idenify a minimal ARMA represenaion for he sum of processes. I refers in paricular o he processes hose sum is general of he ARMA ype of process. This fac was discussed in Granger, Morris (976). Theorem. If he (nx) saionary Y process has he ARMA represenaion Φ( LY ) = Θ( L) ε and Ψ( L) is he (m,n) marix of polynomial, he process Ψ * = Ψ( LY ) has an ARMA represenaion oo. This heorem (see Gourieroux, Monfor (990)) is a simple conclusion derived from he heorem saying ha a process has an ARMA represenaion, when he specral densiy funcion is a funcion wih respec o e iω. In he heorem is no included a way of deermining he represenaion of process Y *. In special cases i is possible, bu in general i is very difficul. Example 3. If Y and Y are of he MA() ype of processes Y = ( Ξ L) ε Vε = σ Y = ( Ξ L) ε Vε = σ () and for all and τ cov( ε, ε τ ) = 0, hen process Y = Y + Y () is also of he ype MA(). In his case he parameers of his process may be deermined (derived), i. e. coefficien of process and a variance of whie noise creae he process Y. If Y and Y are auoregressive processes of he form ( Φ LY ) = ε ( Φ LY ) = ε (3) hen he process Y = Y + Y (4)

is of he ARMA(,) ype. I can be wrien in he form where Φ( LY ) = ( θl) ε (5) Φ( L) = ( Φ + Φ ) L+ ΦΦL (6) and Vε may be derived from a soluion of he equa- he parameer θ ions σ ( + θ ) = σ ( + θ ) + σ ( + θ ) θσ = θσ + θσ (7) The process Φ( LY ) = ( θl) ε can be idenified as he ARMA(,0) process, if he condiion min { θ Φ, θ Φ } < K is saisfied (value K is close o zero). The process Φ( LY ) = ( θl) ε can be idenified as he ARMA(,0) process, if θ<k (value K is close o zero). The able presens he orders p and q of he ARMA(p,q) process for a sum of AR() processes wih indicaed parameers Φ and Φ. The assumpion was arbirary made ha K = K =.. Table. 0 Φ /Φ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0-0.9 (,0) (,0) (,0) (,0) (,) (,) (,) (,) (,) (,) -0.8 (,0) (,0) (,0) (,0) (,) (,) (,) (,) (,) (,) -0.7 (,0) (,0) (,0) (,0) (,0) (,) (,) (,) (,) (,) -0.6 (,0) (,0) (,0) (,0) (,0) (,0) (,) (,) (,) (,) -0.5 (,) (,) (,0) (,0) (,0) (,0) (,0) (,) (,) (,) -0.4 (,) (,) (,) (,0) (,0) (,0) (,0) (,0) (,) (,) -0.3 (,) (,) (,) (,) (,0) (,0) (,0) (,0) (,0) (,) -0. (,) (,) (,) (,) (,) (,0) (,0) (,0) (,0) (,0) -0. (,) (,) (,) (,) (,) (,) (,0) (,0) (,0) (,0) 0 (,) (,) (,) (,) (,) (,) (,) (,0) (,0) (,0) 0. (,) (,) (,) (,) (,) (,) (,) (,0) (,0) (,0) 0. (,) (,) (,) (,) (,) (,) (,0) (,0) (,0) (,0) 0.3 (,) (,) (,) (,) (,) (,0) (,0) (,0) (,) (,)

0.4 (,) (,) (,) (,) (,0) (,0) (,0) (,) (,) (,) 0.5 (,) (,) (,) (,0) (,0) (,0) (,) (,) (,) (,) 0.6 (,) (,) (,0) (,0) (,0) (,) (,) (,) (,) (,) 0.7 (,) (,0) (,0) (,0) (,) (,) (,) (,) (,) (,) 0.8 (,0) (,0) (,0) (,) (,) (,) (,) (,) (,) (,) 0.9 (,0) (,0) (,) (,) (,) (,) (,) (,) (,) (,) To evaluae he ARMA (p,q) represenaion for sum of auoregressive of he AR() ype he heorem was used. For he process Y he auocovariance funcion can be found. For he sake of simpliciy i was assumed ha σ = σ =. The auocovariance funcion for considered processes may expressed as follows: γ γ i ( 0) = ( i =,) Φ i ( h) = Φ γ ( h ) ( i =,) i i i (8) Assuming, ha cov( Y, Yτ) = 0 for all and τ, he auocovariances funcions componen-processes. Example 4. Le Φ = 07. and Φ = 03.. Then he C-array has he form Table 3. p/q 0 3 0.04.06 0.64 0.48 -.6 0.45-0.0 0.0 0.86 0.00 0.00 0.00 3-0.35 0.00 0.00 0.00 The analysis of above array leads o he saemen, ha he sum of AR() processes wih indicaed parameers Φ and Φ is he ARMA(,) ype of process.

In he same way, as in he example 4, he orders p and q mere deermined for he ARMA represenaion of a sum of auoregressive processes assuming differen welficiens. The resuls are abulaed below. Table 4. Φ /Φ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. -0.9 (,0) (,) (,) (,) (,) (,) (,) (,) (,) -0.8 (,) (,0) (,) (,) (,) (,) (,) (,) (,) -0.7 (,) (,) (,0) (,) (,) (,) (,) (,) (,) -0.6 (,) (,) (,) (,0) (,) (,) (,) (,) (,) -0.5 (,) (,) (,) (,) (,0) (,) (,) (,) (,) -0.4 (,) (,) (,) (,) (,) (,0) (,) (,) (,) -0.3 (,) (,) (,) (,) (,) (,) (,0) (,) (,) -0. (,) (,) (,) (,) (,) (,) (,) (,0) (,0) -0. (,) (,) (,) (,) (,) (,) (,) (,0) (0,0) 0 (,) (,) (,) (,) (,) (,) (,0) (,0) (,0) 0. (,) (,) (,) (,) (,) (,) (,0) (,0) (,0) 0. (,) (,) (,) (,) (,) (,0) (,0) (,0) (,0) 0.3 (,) (,) (,) (,) (,0) (,0) (,0) (,0) (,0) 0.4 (,) (,) (,) (,0) (,0) (,0) (,0) (,0) (,) 0.5 (,) (,) (,) (,0) (,0) (,0) (,0) (,) (,) 0.6 (,) (,) (,0) (,0) (,0) (,0) (,) (,) (,) 0.7 (,) (,0) (,0) (,0) (,) (,) (,) (,) (,) 0.8 (,) (,0) (,0) (,) (,) (,) (,) (,) (,) 0.9 (,0) (,) (,) (,) (,) (,) (,) (,) (,) I seen, ha in special cases a sum of auoregressive processes is a auoregressive process. However, his process has in general be idenified as he ARMA(,) process. The following ables were consruced nucler he assumpion abou he correlaion of componen-processes. The orders p and q of he ARMA(p,q) represenaion for differen value of covariance funcion and coefficiens Φ and Φ are presened below.

I is no possible o creae he process Y = Y + Y for all values of Φ and Φ covariance funcion cov( Y, Y ). These parameers and covariance funcion should saisfy he following equaion cov( ε, ε) cov( Y, Y ) = Φ Φ. To deermine cov( Y, Y ) he covariance cov( ε, ε ) should be known. For example covariance cov( Y, Y ) =0.8 may be deermined for saisfying he condiion Φ Φ 05.. Table 5. The orders p and q of he ARMA process, when cov( Y, Y ) =. for = τ τ 08 Φ /Φ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. -0.9 (,) (,) -0.8 (,) (,) (,) -0.7 (,) (,) (,) -0.6 (,) (,) (,) (,) -0.5 (,) (,) (,) (,) (,) -0.4 (,) (,) (,) (,) (,) (,) -0.3 (,) (,) (,) (,) (,) (,) (,) (,) -0. (,) (,) (,) (,) (,) (,) (,) (0,) (0,) -0. (,) (,) (,) (,) (,) (,) (,) (0,) (0,0) 0. (,) (,) (,) (,) (,) (,) (,) (0,) (,0) 0. (,) (,) (,) (,) (,) (,) (,) (,0) (0,) 0.3 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.4 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.5 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.6 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.7 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.8 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.9 (,) (,) (,) (,) (,) (,) (,) (,) (,)

Table 6. The orders p and q of he ARMA process, when cov( Y, Y ) =. for = τ τ 04 Φ /Φ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. -0.9 (,) (,) (,) (,) (,) (,) (,) (,) (,) -0.8 (,) (,) (,) (,) (,) (,) (,) (,) (,) -0.7 (,) (,) (,) (,) (,) (,) (,) (,) (,) -0.6 (,) (,) (,) (,) (,) (,) (,) (,) (,) -0.5 (,) (,) (,) (,) (,) (,) (,) (,) (,) -0.4 (,) (,) (,) (,) (,) (,) (,) (,) (,) -0.3 (,) (,) (,) (,) (,) (,) (,) (,) (,) -0. (,) (,) (,) (,) (,) (,) (,) (0,) (0,) -0. (,) (,) (,) (,) (,) (,) (,) (0,) (0,0) 0. (,) (,) (,) (,) (,) (,) (,0) (,0) (,0) 0. (,) (,) (,) (,) (,) (,) (,0) (,0) (,0) 0.3 (,) (,) (,) (,) (,) (,) (,0) (,0) (,0) 0.4 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.5 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.6 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.7 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.8 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.9 (,) (,) (,) (,) (,) (,) (,) (,) (,) Table 7. The orders p and q of he ARMA process, when cov( Y, Yτ) = 04. for = τ Φ /Φ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. -0.9 (,3) (,3) (,3) (,3) (,3) (,3) (,) (,) (,) -0.8 (,3) (,3) (,3) (,3) (,3) (,) (,) (,) (,) -0.7 (,3) (,3) (,3) (,3) (,) (,) (,) (,) (,) -0.6 (,3) (,3) (,3) (,) (,) (,) (,) (,) (,) -0.5 (,3) (,3) (,) (,) (,) (,) (,) (,) (,) -0.4 (,3) (,) (,) (,) (,) (0,) (0,) (,) (,) -0.3 (,) (,) (,) (,) (,) (0,) (0,) (,) (,) -0. (,) (,) (,) (,) (,) (,) (,0) (,0) (,0) -0. (,) (,) (,) (,) (,) (,) (,) (0,) (0,) 0. (,) (,) (,) (,) (,) (,) (,) (0,) (0,) 0. (,) (,) (,) (,) (,) (,) (,) (0,) (0,) 0.3 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.4 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.5 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.6 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.7 (,) (,) (,) (,) (,) (,) (,) (,) (,)

0.8 (,) (,) (,) (,) (,) (,) (,) (,) (,) 0.9 (,) (,) (,) (,) (,) (,) (,) (,) (,) Table 8. The orders p and q of he ARMA process, when cov( Y, Yτ) = 04. for = τ Φ /Φ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. -0.9 (,4) (,4) (,4) (,4) (,4) (,3) (,3) (,3) (,3) -0.8 (,4) (,4) (,4) (,4) (,3) (,3) (,3) (,3) (,3) -0.7 (,4) (,4) (,4) (,3) (,3) (,3) (,3) (,3) (,3) -0.6 (,4) (,4) (,3) (,) (,) (,3) (,3) (,) (,) -0.5 (,4) (,3) (,3) (,) (,) (,) (,) (,) (,) -0.4 (,3) (,3) (,3) (,3) (,) (0,) (0,) (0,) (0,) -0.3 (,3) (,3) (,3) (,3) (,) (0,) (0,) (0,) (0,) -0. (,3) (,3) (,3) (,) (,) (0,) (0,) (0,) (0,) -0. (,3) (,3) (,3) (,) (,) (0,) (0,) (0,) (0,) 0. (,3) (,3) (,3) (,) (,) (0,) (0,) (0,) (0,) 0. (,3) (,3) (,3) (,) (,) (0,) (0,) (0,) (0,) 0.3 (,3) (,3) (,3) (,) (,) (,) (0,) (0,) (0,) 0.4 (,3) (,3) (,3) (,) (,) (,) (,) (0,) (0,) 0.5 (,3) (,3) (,3) (,3) (,) (,) (,) (,) (,) 0.6 (,3) (,3) (,3) (,3) (,) (,) (,) (,) (,) 0.7 (,3) (,3) (,3) (,3) (,3) (,3) (,3) (,3) (,3) 0.8 (,3) (,3) (,3) (,3) (,3) (,3) (,3) (,3) (,3) 0.9 (,3) (,3) (,3) (,3) (,3) (,3) (,3) (,3) (,3) The following conclusions may be derived:. The sum of AR() processes is in general ARMA ype of process and as a such ype of process should be idenificaion. The order of auoregressive is no larger ha, and he order q of MA depends on he parameers of componen process and on correlaion of hose processes.. The order of he obained ARMA process increases wih an increasmen of parameers and a disance τ, for which he auocovariance funcion akes he non-zero value. 3. In special cases he sum of AR() processes is a auoregressive process of AR(p) ype. The order p may be also equal o one. 4. There are same cases when a sum of auoregressive processes of order one gives he minimal represenaion ARMA(0,q), i.e., he process is

idenified as MA(q). I happens for low values of parameers Φ i and auocovariance funcion aking non-zero values for... -τ=. REFERENCES Beguin J.M., Gourieroux C., Monfor A. (980), Idenificaion of an ARIMA process: he corner mehod, Time Series, ed. T. Anderson, Norh- Holland. Gourieroux C., Monfor A. (990), Séries emporelles e modéles dynamiques, Economica, Paris. Granger C.W.J., Morris M.J. (976), Time Series Modeling and Inerpreaion, J.R. Sais. Soc. A(976), 39, Par.