PG-TO I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62

Similar documents
SGP20N60 SGW20N60. Fast IGBT in NPT-technology

IGW25T120. TrenchStop Series

IGW15T120. TrenchStop Series

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40.

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode

TrenchStop Series I C

TrenchStop Series. P t o t 270 W

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SGP30N60HS SGW30N60HS

I C P tot 138 W

Soft Switching Series

Soft Switching Series I C I F I FSM

IGP03N120H2 IGW03N120H2

IKW40N120T2 TrenchStop 2 nd Generation Series

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current

SKP10N60 SKB10N60, SKW10N60

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss IGBT: IGBT in TRENCHSTOP and Fieldstop technology. Maximum Ratings Parameter Symbol Value Unit.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3.

IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IGD06N60T q. IGBT in TRENCHSTOP and Fieldstop technology. TRENCHSTOP Series. IFAG IPC TD VLS 1 Rev. 2.2,

SGP20N60, SGB20N60, SGW20N60

SGP30N60, SGB30N60, SGW30N60

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

SIPMOS Small-Signal-Transistor

IDP30E120. Fast Switching Diode. Product Summary V RRM 1200 V I F 30 A V F 1.65 V T jmax 150 C

CoolMOS TM Power Transistor

OptiMOS 3 Power-MOSFET

OptiMOS 2 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-Transistor

CoolMOS Power Transistor

CoolMOS TM Power Transistor

CoolMOS Power Transistor

OptiMOS 2 Power-Transistor

OptiMOS TM Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS (TM) 3 Power-Transistor

CoolMOS TM Power Transistor

OptiMOS 2 Power-Transistor

OptiMOS TM Power-Transistor

CoolMOS Power Transistor

SIPMOS Small-Signal-Transistor

SPP08P06P H. SIPMOS Power-Transistor V DS -60 V I D T C = 25 C T C = 100 C. I D puls E AS I D = -8.8 A, V DD = -25 V, R GS = 25 W

OptiMOS -P Small-Signal-Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS TM Power-MOSFET

CoolMOS Power Transistor

OptiMOS TM Power-MOSFET

Product Summary Drain source voltage. Lead free Yes I D. I D puls -320 E AS. P tot 340 W

BSS123. Rev K/W. R thja

OptiMOS 2 Power-Transistor

CoolMOS TM Power Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS TM P3 Power-Transistor

OptiMOS TM Power-Transistor

Data Sheet BUY25CS54A-01

CoolMOS Power Transistor

OptiMOS 3 Power-MOSFET

OptiMOS 2 Power-Transistor

OptiMOS 2 Small-Signal-Transistor

OptiMOS 3 Power-Transistor

OptiMOS TM Power-MOSFET

SIPMOS Small-Signal-Transistor

Rev Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D.

OptiMOS TM 3 Power-Transistor

OptiMOS Power-Transistor

OptiMOS P2 Small-Signal-Transistor

CoolMOS TM Power Transistor

OptiMOS 3 Power-Transistor


Dual N-Channel OptiMOS MOSFET

OptiMOS TM 3 Power-Transistor

OptiMOS TM Power-MOSFET

CoolMOS TM Power Transistor

OptiMOS 2 + OptiMOS -P 2 Small Signal Transistor

OptiMOS 2 Power-Transistor

SPP20N60S5. Cool MOS Power Transistor V DS 600 V

Silicon Carbide Schottky Diode IDH05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

OptiMOS 3 M-Series Power-MOSFET

SIPMOS Small-Signal-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS -P2 Power-Transistor

OptiMOS -T2 Power-Transistor

OptiMOS TM -T2 Power-Transistor

OptiMOS Small-Signal-Transistor

OptiMOS 2 Small-Signal-Transistor

OptiMOS Small-Signal-Transistor

BSS 223PW. ESD Class; JESD22-A114-HBM Class 0. Product Summary V DS -20 V R DS(on) 1.2 Ω I D A. Qualified according to AEC Q101

Transcription:

Fast IGBT in NPTtechnology 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time 10 µs Designed for: Motor controls Inverter NPTTechnology for 600V applications offers: very tight parameter distribution high ruggedness, temperature stable behaviour parallel switching capability PGTO22031 C G E PGTO247321 Qualified according to JEDEC 1 for target applications Pbfree lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type V CE I C V CE(sat) T j Marking Package 600V 15A 2.3V 150 C G15N60 PGTO22031 600V 15A 2.3V 150 C G15N60 PGTO247321 Maximum Ratings Parameter Symbol Value Unit Collectoremitter voltage V CE 600 V DC collector current T C = 25 C T C = 100 C I C A 31 15 Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C 62 Gateemitter voltage V GE ±20 V Avalanche energy, single pulse E AS 85 mj I C = 15 A, V CC = 50 V, R GE = 25 Ω, start at T j = 25 C Short circuit withstand time 2 t SC 10 µs V GE = 15V, V CC 600V, T j 150 C Power dissipation P tot 139 W T C = 25 C Operating junction and storage temperature T j, T stg 55...+150 C Soldering temperature, T s 260 wavesoldering, 1.6mm (0.063 in.) from case for 10s 1 JSTD020 and JESD022 2 Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Rev. 2.1 June 06

Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic IGBT thermal resistance, junction case Thermal resistance, junction ambient R thjc 0.9 R thja PGTO22031 62 PGTO247321 40 K/W Electrical Characteristic, at T j = 25 C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. Static Characteristic Collectoremitter breakdown voltage V (BR)CES V GE =0V, I C =500µA 600 Collectoremitter saturation voltage V CE(sat) V GE = 15V, I C =15A T j =25 C T j =150 C 1.7 2 2.3 2.4 2.8 Gateemitter threshold voltage V GE(th) I C =400µA,V CE =V GE 3 4 5 Zero gate voltage collector current I CES V CE =600V,V GE =0V T j =25 C T j =150 C 40 2000 Gateemitter leakage current I GES V CE =0V,V GE =20V 100 na Transconductance g fs V CE =20V, I C =15A 3 10.9 S Dynamic Characteristic Input capacitance C iss V CE =25V, 800 960 Output capacitance C oss V GE =0V, 84 101 Reverse transfer capacitance f=1mhz 52 62 C rss Gate charge Q Gate V CC =480V, I C =15A V GE =15V Internal emitter inductance measured 5mm (0.197 in.) from case L E PGTO22031 PGTO247321 Short circuit collector current 2) I C(SC) V GE =15V,t SC 10µs V CC 600V, T j 150 C Unit V µa pf 76 99 nc 7 13 nh 150 A 2) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Rev. 2.1 June 06

Switching Characteristic, Inductive Load, at T j =25 C Parameter Symbol Conditions Value min. typ. max. IGBT Characteristic Turnon delay time t d(on) T j =25 C, 32 38 Rise time t r V CC =400V,I C =15A, V GE =0/15V, 23 28 Turnoff delay time t d(off) R G =21Ω, 234 281 1) Fall time t f L σ =180nH, 46 55 1) C Turnon energy E σ =250pF on 0.30 0.36 Energy losses include Turnoff energy E off tail and diode 0.27 0.35 Total switching energy reverse recovery. 0.57 0.71 E ts Unit ns mj Switching Characteristic, Inductive Load, at T j =150 C Parameter Symbol Conditions Value min. typ. max. IGBT Characteristic Turnon delay time t d(on) T j =150 C 31 38 V Rise time t CC =400V,I C =15A, r 23 28 L 1) σ =180nH, Turnoff delay time t d(off) C 1) σ =250pF 261 313 Fall time t f V GE =0/15V, 54 65 R Turnon energy E G =21Ω on 0.45 0.54 Energy losses include Turnoff energy E off tail and diode 0.41 0.53 Total switching energy reverse recovery. 0.86 1.07 E ts Unit ns mj 1) Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E. 3 Rev. 2.1 June 06

8 10 7 I c t p =5µs 6 15µs 5 4 3 2 T C =80 C T C =110 C 1A 50µs 200µs 1ms I c DC 10Hz 100Hz 1kHz 10kHz 100kHz 0.1A 1V 10V 100V 1000V f, SWITCHING FREQUENCY V CE, COLLECTOREMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency (T j 150 C, D = 0.5, V CE = 400V, V GE = 0/+15V, R G = 21Ω) Figure 2. Safe operating area (D = 0, T C = 25 C, T j 150 C) 35A 140W 120W 3 Ptot, POWER DISSIPATION 100W 80W 60W 40W 25A 2 15A 20W 5A 0W 25 C 50 C 75 C 100 C 125 C 25 C 50 C 75 C 100 C 125 C T C, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (T j 150 C) T C, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (V GE 15V, T j 150 C) 4 Rev. 2.1 June 06

5 5 45A 45A 4 4 35A 3 25A 2 15A V GE =20V 15V 13V 11V 9V 7V 5V 35A 3 25A 2 15A V GE =20V 15V 13V 11V 9V 7V 5V 5A 5A 0V 1V 2V 3V 4V 5V V CE, COLLECTOREMITTER VOLTAGE Figure 5. Typical output characteristics (T j = 25 C) 0V 1V 2V 3V 4V 5V V CE, COLLECTOREMITTER VOLTAGE Figure 6. Typical output characteristics (T j = 150 C) 5 45A 4 35A 3 25A 2 15A 5A T j =+25 C 55 C +150 C 0V 2V 4V 6V 8V 10V VCE(sat), COLLECTOREMITTER SATURATION VOLTAGE 4.0V 3.5V 3.0V 2.5V 2.0V 1.5V 1.0V I C = 3 I C = 15A 50 C 0 C 50 C 100 C 150 C V GE, GATEEMITTER VOLTAGE Figure 7. Typical transfer characteristics (V CE = 10V) T j, JUNCTION TEMPERATURE Figure 8. Typical collectoremitter saturation voltage as a function of junction temperature (V GE = 15V) 5 Rev. 2.1 June 06

t d(off) t d(off) t, SWITCHING TIMES 100ns t f t d(on) t, SWITCHING TIMES 100ns t d(on) t f t r t r 10ns 5A 15A 2 25A 3 I C, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, R G = 21Ω, 10ns 0Ω 20Ω 40Ω 60Ω R G, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, I C = 15A, 5.5V t, SWITCHING TIMES 100ns t d(off) t f t r t d(on) 10ns 0 C 50 C 100 C 150 C VGE(th), GATEEMITTER THRESHOLD VOLTAGE 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V max. typ. min. 50 C 0 C 50 C 100 C 150 C T j, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V, I C = 15A, R G = 21Ω, T j, JUNCTION TEMPERATURE Figure 12. Gateemitter threshold voltage as a function of junction temperature (I C = 0.4mA) 6 Rev. 2.1 June 06

1.8mJ 1.6mJ ) E on and E ts include losses due to diode recovery. E ts 1.4mJ 1.2mJ ) E on and E ts include losses due to diode recovery. E ts E, SWITCHING ENERGY LOSSES 1.4mJ 1.2mJ 1.0mJ 0.8mJ 0.6mJ 0.4mJ 0.2mJ E on E off E, SWITCHING ENERGY LOSSES 1.0mJ 0.8mJ 0.6mJ 0.4mJ 0.2mJ E off E on 0.0mJ 5A 15A 2 25A 3 35A I C, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, R G = 21Ω, 0.0mJ 0Ω 20Ω 40Ω 60Ω 80Ω R G, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, I C = 15A, 1.0mJ E, SWITCHING ENERGY LOSSES 0.8mJ 0.6mJ 0.4mJ 0.2mJ ) E on and E ts include losses due to diode recovery. E ts E on E off ZthJC, TRANSIENT THERMAL IMPEDANCE 10 0 K/W 10 1 K/W 10 2 K/W 10 3 K/W D=0.5 0.2 0.1 0.05 0.02 0.01 single pulse R,(1/W) τ, (s) 0.5321 0.04968 0.2047 2.5810 3 0.1304 2.5410 4 0.0027 3.0610 4 R 1 R 2 C 1 = τ 1 / R 1 C 2 = τ 2 / R 2 0.0mJ 0 C 50 C 100 C 150 C 10 4 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s T j, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V, I C = 15A, R G = 21Ω, t p, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = t p / T) 7 Rev. 2.1 June 06

25V 1nF 20V C iss VGE, GATEEMITTER VOLTAGE 15V 10V 5V 120V 480V C, CAPACITANCE 100pF C oss C rss 0V 0nC 25nC 50nC 75nC 100nC 10pF 0V 10V 20V 30V Q GE, GATE CHARGE Figure 17. Typical gate charge (I C = 15A) V CE, COLLECTOREMITTER VOLTAGE Figure 18. Typical capacitance as a function of collectoremitter voltage (V GE = 0V, f = 1MHz) 25µs 25 tsc, SHORT CIRCUIT WITHSTAND TIME 20µs 15µs 10µs 5µs 0µs 10V 11V 12V 13V 14V 15V IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 20 15 10 5 10V 12V 14V 16V 18V 20V V GE, GATEEMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gateemitter voltage (V CE = 600V, start at T j = 25 C) V GE, GATEEMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gateemitter voltage (V CE 600V, T j = 150 C) 8 Rev. 2.1 June 06

PGTO22031 TO22B dimensions symbol [mm] [inch] min max min max A 9.70 10.30 0.3819 0.4055 B 14.88 15.95 0.5858 0.6280 C 0.65 0.86 0.0256 0.0339 D 3.55 3.89 0.1398 0.1531 E 2.60 3.00 0.1024 0.1181 F 6.00 6.80 0.2362 0.2677 G 13.00 14.00 0.5118 0.5512 H 4.35 4.75 0.1713 0.1870 K 0.38 0.65 0.0150 0.0256 L 0.95 1.32 0.0374 0.0520 M 2.54 typ. 0.1 typ. N 4.30 4.50 0.1693 0.1772 P 1.17 1.40 0.0461 0.0551 T 2.30 2.72 0.0906 0.1071 PGTO247321 9 Rev. 2.1 June 06

T(t) j τ 1 r1 τ 2 r2 τ r n n p(t) r r 1 2 n r T C Figure D. Thermal equivalent circuit Figure A. Definition of switching times Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance L σ =180nH and Stray capacity C σ =250pF. 10 Rev. 2.1 June 06

Edition 200601 Published by Infineon Technologies AG 81726 München, Germany Infineon Technologies AG 10/23/06. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ( Beschaffenheitsgarantie ). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in lifesupport devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 11 Rev. 2.1 June 06