Quantum chaos in optical microcavities

Similar documents
Collimated directional emission from a peanut-shaped microresonator

Ray-wave correspondence in the nonlinear description of stadium-cavity lasers

Analysis of high-quality modes in open chaotic microcavities

Photonic Micro and Nanoresonators

MICRODISK lasers supported by a pedestal to form strong

Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping

CHAPTER 1 PROGRESS IN ASYMMETRIC RESONANT CAVITIES: USING SHAPE AS A DESIGN PARAMETER IN DIELECTRIC MICROCAVITY LASERS

Polariton laser in micropillar cavities

Quadratic nonlinear interaction

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 45, NO. 12, DECEMBER /$ IEEE

Homoclinic and Heteroclinic Motions in Quantum Dynamics

Design of quantum cascade microcavity lasers based on Q factor versus etching depth

Inversed Vernier effect based single-mode laser emission in coupled microdisks

arxiv: v1 [physics.optics] 24 Jul 2014

Resonant modes and laser spectrum of microdisk lasers. N. C. Frateschi and A. F. J. Levi

Quantum chaotic scattering

Controlling Light at Exceptional Points

Summary of Beam Optics

Wavelength-scale microdisks as optical gyroscopes: a finite-difference time-domain simulation study

Quantum decay rates in chaotic scattering

Chapter 29. Quantum Chaos

High performance THz quantum cascade lasers

Current issues in coherence for small laser sources

Propagation of Photons Through Localized Coupled Cavity Modes in Photonic Band Gap Structures:

From Regularity to Chaos: Studies on Semiconductor Microdisks and Deformed Microdisk Lasers

arxiv: v3 [nlin.cd] 29 Sep 2008

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER

Photonic crystals. Semi-conductor crystals for light. The smallest dielectric lossless structures to control whereto and how fast light flows

Vertically Emitting Microdisk Lasers

Light Interaction with Small Structures

Ergodicity of quantum eigenfunctions in classically chaotic systems

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

arxiv: v2 [physics.optics] 17 Nov 2015

Photonic devices for quantum information processing:

Chaotic explosions. February Eduardo G. Altmann 1, Jefferson S. E. Portela 1,2 and Tamás Tél 3. Budapest, H-1117, Hungary

Optical Nonlinearities in Quantum Wells

Is Quantum Mechanics Chaotic? Steven Anlage

Nanophotonics: solar and thermal applications

Resonantly Trapped Bound State in the Continuum Laser Abstract

OPTICAL BISTABILITY AND UPCONVERSION PROCESSES IN ERBIUM DOPED MICROSPHERES

Cavity QED with quantum dots in microcavities

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Workshop on Coherent Phenomena in Disordered Optical Systems May Random Laser - Physics & Application

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials

A microring multimode laser using hollow polymer optical fibre

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

THz QCL sources based on intracavity difference-frequency mixing

Nanomaterials and their Optical Applications

RAY AND WAVE DYNAMICS IN THREE DIMENSIONAL ASYMMETRIC OPTICAL RESONATORS SCOTT MICHAEL LACEY A DISSERTATION

THz QCL sources for operation above cryogenic temperatures Mikhail Belkin

Ulam method and fractal Weyl law for Perron Frobenius operators

Hydrodynamic solitons in polariton superfluids

arxiv: v1 [nlin.cd] 16 Jul 2010

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

SUPPLEMENTARY INFORMATION

Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays. Hatice Altug * and Jelena Vučković

Interaction Matrix Element Fluctuations

Phys 622 Problems Chapter 5

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures

Time Dependent Perturbation Theory. Andreas Wacker Mathematical Physics Lund University

Electrically Driven Polariton Devices

Noise in voltage-biased scaled semiconductor laser diodes

Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal Nanocavity via Unsymmetrical Displacement of Air-Holes

arxiv: v1 [quant-ph] 6 Apr 2016

Scar Selection in an Optical Fibre

Abstract Resonances in Nonintegrable Open Systems Jens Uwe Nöckel 1997

Higher-order exceptional points

Measured Transmitted Intensity. Intensity 1. Hair

Random Lasers - Physics & Application

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Interaction Matrix Element Fluctuations

Teleportation of electronic many- qubit states via single photons

Quantum superpositions and correlations in coupled atomic-molecular BECs

Surface Plasmon Polaritons on Structured Surfaces. Alexei A. Maradudin and Tamara A. Leskova

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

GENERALIZED SURFACE PLASMON RESONANCE SENSORS USING METAMATERIALS AND NEGATIVE INDEX MATERIALS

Advanced techniques Local probes, SNOM

Experimental observation of spectral gap in microwave n-disk systems

Low threshold and room-temperature lasing of electrically pumped red-emitting InP/(Al Ga 0.80 ) In 0.49.

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

Thermalization in Quantum Systems

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

A Multipass Optics for Quantum-Well-Pumped Semiconductor Disk Lasers

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

THE spontaneous emission coupling factor ( factor) of

Nonlinear optics with quantum-engineered intersubband metamaterials

Regular & Chaotic. collective modes in nuclei. Pavel Cejnar. ipnp.troja.mff.cuni.cz

Workshop on New Materials for Renewable Energy

Far- and Near-Field Investigations on the Lasing Modes in Two-Dimensional Photonic Crystal Slab Lasers

Quantum transport in nanoscale solids

NONLINEAR TRANSITIONS IN SINGLE, DOUBLE, AND TRIPLE δ-doped GaAs STRUCTURES

Introduction to Theory of Mesoscopic Systems

Entangled Photon Generation via Biexciton in a Thin Film


chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

Open billiards and Applications

Strongly Localized Photonic Mode in 2D Periodic Structure Without Bandgap

Simulation of Optical Modes in Microcavities

The Mathematics of Lasers

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Transcription:

Quantum chaos in optical microcavities J. Wiersig Institute for Theoretical Physics, Otto-von-Guericke University, Magdeburg Collaborations J. Unterhinninghofen (Magdeburg) M. Hentschel (Dresden) J. Main (Stuttgart) H. Schomerus (Lancaster) Supported by the DFG research group Scattering Systems with Complex Dynamics

Theorie der Kondensierten Materie I Prof. J. Wiersig Light matter interaction in semiconductor nanostructures Nonlinear dynamics and charge transport in nanostructures Dr. habil. G. Kasner D. Hommel/A. Rosenauer et al., Bremen Optical properties of microcavities S.W. Cho and Y.D. Park, Seoul Quasicrystals Dipl. Phys. J. Unterhinninghofen D. Heitmann/T. Kipp et al., Hamburg I.R. Fischer et al., Iowa J. Wiersig CIRM 2008 2

Theorie der Kondensierten Materie I Prof. J. Wiersig Light matter interaction in semiconductor nanostructures Nonlinear dynamics and charge transport in nanostructures Dr. habil. G. Kasner D. Hommel/A. Rosenauer et al., Bremen Optical properties of microcavities S.W. Cho and Y.D. Park, Seoul Quasicrystals Dipl. Phys. J. Unterhinninghofen D. Heitmann/T. Kipp et al., Hamburg I.R. Fischer et al., Iowa J. Wiersig CIRM 2008 2

Outline 1 Introduction to optical microcavities 2 Avoided resonance crossings Avoided crossings despite integrability Formation of long-lived, scarlike modes Unidirectional light emission from high-q modes 3 Unidirectional light emission and universal far-field patterns 4 Fractal Weyl law 5 Summary J. Wiersig CIRM 2008 3

Introduction to optical microcavities J. Wiersig CIRM 2008 4

Introduction to optical microcavities Microdisk total internal reflection φ φ φ > φ c φ < φ c Bell labs Light confinement due to TIR tunneling J. Wiersig CIRM 2008 5

Introduction to optical microcavities Microdisk total internal reflection φ φ φ > φ c φ < φ c Bell labs Light confinement due to TIR Whispering-gallery modes Light emission due to tunneling tunneling High quality factor Q = ωτ Uniform far-field pattern J. Wiersig CIRM 2008 5

Introduction to optical microcavities Types of cavities microdisk microsphere microtorus Bell labs H. Wang et al. V.S. Ilschenko et al. VCSEL micropillar D. Hommel et al. photonic crystal defect cavity C. Reese et al. J. Wiersig CIRM 2008 6

Introduction to optical microcavities Applications Strong light confinement to a very small volume Individual optical modes Control over light-matter interaction... Applications Microlasers Single-photon sources Quantum computers Sensors Filters... Bell labs J. Wiersig CIRM 2008 7

Introduction to optical microcavities Deformed microdisks Directed light emission from deformed disks A. Levi et al., APL 62, 561 (1993) Open quantum billiard (ray-wave correspondence) sin χ < 1/n no TIR J.U. Nöckel and A.D. Stone, Nature 385, 45 (1997) J. Wiersig CIRM 2008 8

Introduction to optical microcavities Wave equation and boundary conditions Quantum billiard: energy eigenstate h 2 + k 2i ψ(x, y) = 0 and ψ(x, y) = 0 outside, k = q 2mE 2 R. J. Wiersig CIRM 2008 9

Introduction to optical microcavities Wave equation and boundary conditions Quantum billiard: energy eigenstate h 2 + k 2i ψ(x, y) = 0 and ψ(x, y) = 0 outside, k = q 2mE 2 R. Optical microcavity, (TM polarized) mode : E z = Re[ψ(x, y)e iωt ] h 2 + n(x, y) 2 k 2i ψ(x, y) = 0 and continuity of ψ and ψ + outgoing wave conditions, k = ω/c C. lifetime τ = 1 2Im(ω) n(x,y) = n n(x,y) = 1 J. Wiersig CIRM 2008 9

Introduction to optical microcavities Deformed microdisks in experiments A. Levi et al., APL 62, 561 (1993) C. Gmachl et al., Science 280, 1556 (1998) M. Kneissl et al., APL 84, 2485 (2004) Improved directionality but Q-factor is strongly reduced Ultimate goal: unidirectional light emission from high-q modes J. Wiersig CIRM 2008 10

Avoided resonance crossings J. Wiersig CIRM 2008 11

Avoided resonance crossings Avoided level crossings E i R, W = V Eigenvalues of H E ± = E 1 + E 2 2 «E1 V H = W E 2 r (E1 E 2 ) ± 2 + VW 4 Vary a parameter V = 0 V 0 E Hybridization (mixing) of eigenstates near avoided level crossing J. Wiersig CIRM 2008 12

Avoided resonance crossings Internal coupling 0Im(E) E ± = E 1 + E 2 2 E i C, W = V : internal coupling r (E1 E 2 ) ± 2 + VW 4 V < V c (weak coupling) V > V c (strong coupling) Re(E) long-lived short-lived Small mixing of eigenstates J. Wiersig CIRM 2008 13

Avoided resonance crossings External coupling 0Im(E) E ± = E 1 + E 2 2 E i C, W V : external coupling r (E1 E 2 ) ± 2 + VW 4 strong coupling Re(E) Formation of short- and long-lived modes J. Wiersig CIRM 2008 14

Avoided resonance crossings Avoided crossings despite integrability Boundary element method J. Wiersig, J. Opt. A: Pure Appl. Opt. 5, 53 (2003) Normalized frequency Ω = ωr/c = kr Re(Ω) 8.24 8.22 8.2 8.18 8.16 8.14 A B C D elliptical microcavity C D E F Im(Ω) 0-0.0001-0.0002-0.0003-0.0004-0.0005 B A D C 0.62 0.64 0.66 0.68 eccentricity E F J. Wiersig CIRM 2008 15

Avoided resonance crossings Avoided crossings despite integrability Re(Ω) A 8.24 8.22 B 8.2 8.18 8.16 8.14 elliptical microcavity C D C D E F A C E B D F Im(Ω) 0-0.0001-0.0002-0.0003-0.0004-0.0005 B A D C 0.62 0.64 0.66 0.68 eccentricity E F Formation of scarlike modes J. Wiersig, PRL 97, 253901 (2006) J. Wiersig CIRM 2008 16

Avoided resonance crossings Avoided crossings despite integrability Re(Ω) A 8.24 8.22 B 8.2 8.18 8.16 8.14 elliptical microcavity C D C D E F A C E B D F Im(Ω) 0-0.0001-0.0002-0.0003-0.0004-0.0005 B A D C 0.62 0.64 0.66 0.68 eccentricity E F Formation of scarlike modes J. Wiersig, PRL 97, 253901 (2006) J. Wiersig CIRM 2008 16

Avoided resonance crossings Avoided crossings despite integrability Re(Ω) A 8.24 8.22 B 8.2 8.18 8.16 8.14 elliptical microcavity C D C D E F A C E B D F Im(Ω) 0-0.0001-0.0002-0.0003-0.0004-0.0005 B A D C 0.62 0.64 0.66 0.68 eccentricity E F Formation of scarlike modes J. Wiersig, PRL 97, 253901 (2006) Augmented ray dynamics including the Goos-Hänchen shift J. Unterhinninghofen, J. Wiersig, and M. Hentschel, PRE 78, 016201 (2008) J. Wiersig CIRM 2008 16

Im(Ω) Avoided resonance crossings Formation of long-lived, scarlike modes Re(Ω) 13.2 13.1 13 12.9 12.8 A B 0 C -0.005 A -0.01 F -0.015 B E -0.02 D 0.72 0.73 0.74 0.75 0.76 0.77 aspect ratio A C C D E E F J. Wiersig, PRL 97, 253901 (2006) Long-lived mode C: Q 23000 (increase by more than one order of magnitude) no diffraction at corners B D F J. Wiersig CIRM 2008 17

Avoided resonance crossings Formation of long-lived, scarlike modes Im(Ω) Re(Ω) 13.2 13.1 13 12.9 12.8 A B 0 C -0.005 A -0.01 F -0.015 B E -0.02 D 0.72 0.73 0.74 0.75 0.76 0.77 aspect ratio C C D E F J. Wiersig, PRL 97, 253901 (2006) Long-lived mode C: Q 23000 (increase by more than one order of magnitude) no diffraction at corners scarlike mode pattern At the avoided resonance crossing a long-lived, scarlike mode is formed J. Wiersig CIRM 2008 17

Avoided resonance crossings Unidirectional light emission from high-q modes Normalized frequency Ω = ωr/c = kr, quality factor Q = Re(Ω) 2 Im(Ω) Re(Ω) 7.05 7.04 7.03 7.02 7.01 7 6e+05 5e+05 long-lived R R 2 d Q 4e+05 x1000 3e+05 short-lived 0.39 0.4 0.41 0.42 0.43 0.44 0.45 d/r Weak internal coupling: weak hybridization of modes J. Wiersig CIRM 2008 18

Avoided resonance crossings Unidirectional light emission from high-q modes Far-field pattern is dominated by the short-lived component low-q mode high-q mode Intensity (arb. units) θ 0 60 120 180 θ Hybridized whispering-gallery mode has Q = 550000 and unidirectional emission J. Wiersig CIRM 2008 19

Avoided resonance crossings Unidirectional light emission from high-q modes far-field intensity (arb. units) 0 50 100 150 observation angle θ in degree Small angular divergence and ultra-high Q > 10 8 J. Wiersig CIRM 2008 20

Avoided resonance crossings Unidirectional light emission from high-q modes far-field intensity (arb. units) 0 50 100 150 observation angle θ in degree F. Wilde PhD thesis (2008) Heitmann group, Hamburg Small angular divergence and ultra-high Q > 10 8 J. Wiersig CIRM 2008 20

Unidirectional light emission and universal far-field patterns J. Wiersig CIRM 2008 21

Unidirectional light emission and universal far-field patterns Problem: in the case of multimode lasing we may have modes with different directionality J. Wiersig CIRM 2008 22

Unidirectional light emission and universal far-field patterns Problem: in the case of multimode lasing we may have modes with different directionality Universal far-field pattern due to unstable manifold H.G.L Schwefel et al., J. Opt. Soc. Am. B 21, 923 (2004) S.-Y. Lee et al., Phys. Rev. A 72, 061801(R) (2005) S.-B. Lee et al., Phys. Rev. A 75, 011802(R) (2007) S. Shinohara and T. Harayama, Phys. Rev. E 75, 036216 (2007) J. Wiersig CIRM 2008 22

Unidirectional light emission and universal far-field patterns Problem: in the case of multimode lasing we may have modes with different directionality Universal far-field pattern due to unstable manifold H.G.L Schwefel et al., J. Opt. Soc. Am. B 21, 923 (2004) S.-Y. Lee et al., Phys. Rev. A 72, 061801(R) (2005) S.-B. Lee et al., Phys. Rev. A 75, 011802(R) (2007) S. Shinohara and T. Harayama, Phys. Rev. E 75, 036216 (2007) Our goal: unidirectional emission high Q-factors J. Wiersig and M. Hentschel, PRL 100, 033901 (2008) J. Wiersig CIRM 2008 22

Unidirectional light emission and universal far-field patterns Limaçon cavity ρ(φ) = R(1 + ε cos φ) 1 sin χ χ 1/n s ε=0 R leaky region no total internal reflection 0 1/n 1 0 0.2 0.4 0.6 s/s max 0.8 1 0.2 0.4 0.6 s/s max 0.8 1 ρ ε = 0.43 φ sin χ 1 s 1/n 0 1/n 1 J. Wiersig 0 CIRM 2008 23

Unidirectional light emission and universal far-field patterns Unstable manifold Chaotic repeller: set of points in phase space that never visits the leaky region both in forward and backward time evolution Unstable manifold: the set of points that converges to the repeller in backward time evolution (weight according to Fresnel s laws) Subtle differences between TE and TM polarization J. Wiersig CIRM 2008 24

Unidirectional light emission and universal far-field patterns Far-field pattern: ray simulation far-field intensity (arb. units) 1 TE TM 2 1 1s 0 0.5 s/s max 1 2s 1 1 φ FF = 0 2s 2-0.2 -sin χ B -1/n -0.4 sin χ 0 50 100 150 observation angle φ FF in degree Difference between TE and TM modes is due to the Brewster angle 2 1s J. Wiersig CIRM 2008 25

Unidirectional light emission and universal far-field patterns Far-field pattern: mode calculation TE far-field intensity (arb. units) TM Q = 200000 Q = 10 7 0 50 100 150 observation angle φ FF in degree all high-q TE modes show unidirectional emission (universal far-field pattern) J. Wiersig CIRM 2008 26

Unidirectional light emission and universal far-field patterns Husimi representation 1 sin χ 1/n 0 1/n (a) 1 0 0.2 0.4 0.6 0.8 1 s/s max Scarring ensures high Q-factors J. Wiersig CIRM 2008 27

Unidirectional light emission and universal far-field patterns Husimi magnification sin χ 1/n (b) TE 0 1/n 1/n sin χ 0 (c) TM 1/n 0 0.2 0.4 0.6 0.8 1 s/smax Unidirectional emission is due to the unstable manifold Robust: not sensitive to internal mode structure and cavity size works in a broad regime of shape parameter ε and refractive index J. Wiersig CIRM 2008 28

Unidirectional light emission and universal far-field patterns Experiments on the Limaçon cavity Theory: J. Wiersig and M. Hentschel, PRL 100, 033901 (2008) Harayama et al., Kyoto Capasso et al., Harvard Cao et al., Yale J. Wiersig CIRM 2008 29

Fractal Weyl law J. Wiersig CIRM 2008 30

Fractal Weyl law Weyl law for closed systems Density of states ρ(e) = Integrated density of states N(E) = Z E X δ(e E i ) ; E 1 E 2... i=1 ρ(e )de = #{i E i E} split N(E) into a smooth part and a fluctuating part N 8 7 6 5 4 3 2 1 N(E) = N(E) + N fluc (E) E 1 E 2 N(E) E 3... N(E) E J. Wiersig CIRM 2008 31

Fractal Weyl law Weyl law for closed systems Density of states ρ(e) = Integrated density of states N(E) = Z E X δ(e E i ) ; E 1 E 2... i=1 ρ(e )de = #{i E i E} split N(E) into a smooth part and a fluctuating part N 8 7 6 5 4 3 2 1 N(E) = N(E) + N fluc (E) E 1 E 2 N(E) E 3... N(E) E Weyl s law for 2D billiard with area A ( 2 /2m = 1) N(E) = A 4π E k 2 J. Wiersig CIRM 2008 31

Fractal Weyl law How to count states in open systems? Re(k) Im(k) J. Wiersig CIRM 2008 32

Fractal Weyl law How to count states in open systems? Re(k) C Im(k) N(k) = {k n : Im(k n) > C, Re(k n) k}. J. Wiersig CIRM 2008 32

Fractal Weyl law How to count states in open systems? Re(k) C Im(k) N(k) = {k n : Im(k n) > C, Re(k n) k}. Conjecture: fractal Weyl law for open chaotic systems J. Sjöstrand, Duke Math. J. 60, 1 (1990), M. Zworski, Invent. Math. 136, 353 (1999) N(k) k α. with non-integer exponent α = D + 1 2 where D is the fractal dimension of the chaotic repeller J. Wiersig CIRM 2008 32

Fractal Weyl law How to count states in open systems? Re(k) C Im(k) N(k) = {k n : Im(k n) > C, Re(k n) k}. Conjecture: fractal Weyl law for open chaotic systems J. Sjöstrand, Duke Math. J. 60, 1 (1990), M. Zworski, Invent. Math. 136, 353 (1999) with non-integer exponent N(k) k α. α = d + 2 2 where d is the fractal dimension of the chaotic repeller in the Poincaré section J. Wiersig CIRM 2008 32

Fractal Weyl law How to count states in open systems? Re(k) C Im(k) N(k) = {k n : Im(k n) > C, Re(k n) k}. Conjecture: fractal Weyl law for open chaotic systems J. Sjöstrand, Duke Math. J. 60, 1 (1990), M. Zworski, Invent. Math. 136, 353 (1999) with non-integer exponent N(k) k α. α = d + 2 2 where d is the fractal dimension of the chaotic repeller in the Poincaré section J. Wiersig CIRM 2008 32

Fractal Weyl law Microstadium refractive index = 1 R refractive index = n L = R χ 2L s J. Wiersig CIRM 2008 33

Fractal Weyl law Microstadium refractive index = 1 R refractive index = n L = R χ 2L s 10µm n = 3.3 (GaAs): weakly open T. Fukushima and T. Harayama, IEEE J. Sel. Top. Quantum Electron., 10, 1039 (2004) n = 1.5 (polymer): strongly open M. Lebenthal et al., Appl. Phys. Lett., 88, 031108 (2006) J. Wiersig CIRM 2008 33

Fractal Weyl law Numerical scheme Boundary element method J. Wiersig, J. Opt. A: Pure Appl. Opt. 5, 53 (2003) Computing sufficiently many resonances in the complex plane is extremely difficult J. Wiersig CIRM 2008 34

Fractal Weyl law Numerical scheme Boundary element method J. Wiersig, J. Opt. A: Pure Appl. Opt. 5, 53 (2003) Computing sufficiently many resonances in the complex plane is extremely difficult 25 20 σ/r 15 10 5 0 0.5 1 1.5 2 2.5 Ω Normalized frequency Ω = kr J. Wiersig CIRM 2008 34

Fractal Weyl law Numerical scheme Boundary element method J. Wiersig, J. Opt. A: Pure Appl. Opt. 5, 53 (2003) Computing sufficiently many resonances in the complex plane is extremely difficult σ/r 25 20 15 10 0 harmonic inversion Im(Ω) -0.01-0.02-0.03-0.04 5 0 0.5 1 1.5 2 2.5 Ω Normalized frequency Ω = kr -0.05-0.06 0 5 10 15 20 25 Re(Ω) Boundary element method + harmonic inversion statistics of resonances J. Wiersig CIRM 2008 34

Fractal Weyl law Number of modes 60 50 Probability density 40 30 20 10 0 0 0.01 0.02 0.03 0.04 0.05 0.06 -Im(Ω) J. Wiersig CIRM 2008 35

Fractal Weyl law Number of modes 60 50 8 7 cutoff C = 0.06 Probability density 40 30 20 10 0 0 0.01 0.02 0.03 0.04 0.05 0.06 -Im(Ω) ln(n) 6 5 4 3 2 α 1.98 0 0.5 1 1.5 2 2.5 3 ln(ω) J. Wiersig CIRM 2008 35

Fractal Weyl law Number of modes 60 50 8 7 cutoff C = 0.06 Probability density 40 30 20 10 0 0 0.01 0.02 0.03 0.04 0.05 0.06 -Im(Ω) ln(n) 6 5 4 3 2 α 1.98 0 0.5 1 1.5 2 2.5 3 ln(ω) α [1.96, 2.02] for C [0.03, 0.1] J. Wiersig CIRM 2008 35

Fractal Weyl law Chaotic repeller Chaotic repeller: set of points in phase space that never visits the leaky region both in forward and backward time evolution 1 p 1/n 0 s/s max 1 J. Wiersig CIRM 2008 36

Fractal Weyl law Chaotic repeller Chaotic repeller: set of points in phase space that never visits the leaky region both in forward and backward time evolution 1 0.83 (a) 0.73 (b) p p p 1/n 0 0.64 0.719 s/s max 1 0.395 s/s max 0.46 0.4066 s/s max 0.41 Chaotic repeller is a fractal with box-counting dimension d 1.68 J. Wiersig CIRM 2008 36

Fractal Weyl law Chaotic repeller Chaotic repeller: set of points in phase space that never visits the leaky region both in forward and backward time evolution 1 0.83 (a) 0.73 (b) p p p 1/n 0 0.64 0.719 s/s max 1 0.395 s/s max 0.46 0.4066 s/s max 0.41 Chaotic repeller is a fractal with box-counting dimension d 1.68 α = d+2 2 = 1.84, i.e. fractal Weyl law fails! J. Wiersig CIRM 2008 36

Fractal Weyl law Chaotic repeller including Fresnel s laws Account for partial escape due to Fresnel s laws real-valued I(s, p) [0, 1] 1 p 1/n 0 s/s max 1 J. Wiersig CIRM 2008 37

Fractal Weyl law Chaotic repeller including Fresnel s laws Account for partial escape due to Fresnel s laws real-valued I(s, p) [0, 1] 1 p 1/n 0 s/s max 1 Multifractal: infinite set of fractal dimensions d(q) with real q box counting dimension d(0) 1.986 α 1.99 information dimension d(1) 1.913 α 1.96 correlation dimension d(2) 1.877 α 1.94 d(0) is consistent with fractal Weyl law (α [1.96, 2.02]) J. Wiersig CIRM 2008 37

Fractal Weyl law Low-index stadium n = 1.5 (polymer) 0-0.1 Im(Ω) -0.2 0 10 20 30 40 50 60 70 Re(Ω) α [1.68, 1.88] J. Wiersig CIRM 2008 38

Fractal Weyl law Low-index stadium n = 1.5 (polymer) 0 1 p -0.1 Im(Ω) -0.2 0 10 20 30 40 50 60 70 Re(Ω) α [1.68, 1.88] 1/n 0 s/s max d(0) 1.512 d(1) d(2) 1.593 1 The predicted exponent, 1.76 and 1.78, is consistent with the fractal Weyl law J. Wiersig CIRM 2008 38

Fractal Weyl law Low-index stadium n = 1.5 (polymer) 0 1 p -0.1 Im(Ω) -0.2 0 10 20 30 40 50 60 70 Re(Ω) α [1.68, 1.88] 1/n 0 s/s max d(0) 1.512 d(1) d(2) 1.593 1 The predicted exponent, 1.76 and 1.78, is consistent with the fractal Weyl law Conjecture: the fractal Weyl law applies to optical microcavities if the concept of the chaotic repeller is extended by including Fresnel s laws J. Wiersig and J. Main, PRE 77, 036205 (2008) J. Wiersig CIRM 2008 38

Lifetime statistics 80 60 n=3.3, TM stadium RMT P(-Im Ω) 40 20 0 0 0.02 0.04 0.06 0.08 -Im Ω 40 n=3.3, TE 30 P(-Im Ω) 20 10 0 0 0.02 0.04 0.06 0.08 -Im Ω Good agreement with random-matrix theory; see talk by H. Schomerus H. Schomerus, J. Wiersig, and J. Main, submitted (2008) J. Wiersig CIRM 2008 39

Summary Optical microcavities as open quantum billiards Avoided resonance crossings Avoided crossings despite integrability Formation of long-lived, scarlike modes Unidirectional light emission from high-q modes Unidirectional light emission and universal far-field patterns Fractal Weyl law J. Wiersig CIRM 2008 40