Ingegneria dell Automazione - Sistemi in Tempo Reale p.1/28

Similar documents
Ingegneria dell Automazione - Sistemi in Tempo Reale p.1/30

Analysis of Discrete-Time Systems

Analysis of Discrete-Time Systems

Automatique. A. Hably 1. Commande d un robot mobile. Automatique. A.Hably. Digital implementation

4F3 - Predictive Control

Chapter 6 State-Space Design

CONTROL OF DIGITAL SYSTEMS

Control Systems Lab - SC4070 Control techniques

Methods for analysis and control of. Lecture 6: Introduction to digital control

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu

1 x(k +1)=(Φ LH) x(k) = T 1 x 2 (k) x1 (0) 1 T x 2(0) T x 1 (0) x 2 (0) x(1) = x(2) = x(3) =

Lecture Note #6 (Chap.10)

Discrete-time linear systems


16.30 Estimation and Control of Aerospace Systems

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation

Control System Design

Sampling of Linear Systems

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

Discrete-time Controllers

VAAL UNIVERSITY OF TECHNOLOGY FACULTY OF ENGINEERING

Properties of Open-Loop Controllers

Digital Control & Digital Filters. Lectures 13 & 14

ECE 680 Fall Test #2 Solutions. 1. Use Dynamic Programming to find u(0) and u(1) that minimize. J = (x(2) 1) u 2 (k) x(k + 1) = bu(k),

Chapter 7. Digital Control Systems

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year

Digital Control System Models. M. Sami Fadali Professor of Electrical Engineering University of Nevada

Lecture 11. Frequency Response in Discrete Time Control Systems

Homogeneous and particular LTI solutions

Discrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture

Digital Control Systems

An Introduction to Model-based Predictive Control (MPC) by

Automatic Control 2. Model reduction. Prof. Alberto Bemporad. University of Trento. Academic year

Recursive, Infinite Impulse Response (IIR) Digital Filters:

AC&ST AUTOMATIC CONTROL AND SYSTEM THEORY SYSTEMS AND MODELS. Claudio Melchiorri

R10. IV B.Tech II Semester Regular Examinations, April/May DIGITAL CONTROL SYSTEMS JNTUK

LABORATORY OF AUTOMATION SYSTEMS Analytical design of digital controllers

Problem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013

Discrete and continuous dynamic systems

EEE582 Homework Problems

ECE317 : Feedback and Control

ESC794: Special Topics: Model Predictive Control

Classify a transfer function to see which order or ramp it can follow and with which expected error.

Nonlinear Control Systems

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller

DIGITAL CONTROL OF POWER CONVERTERS. 3 Digital controller design

Modeling and control of a District Heating System. 10 th SEMESTER PROJECT, AALBORG UNIVERSITY 2010 THE DEPARTMENT OF ELECTRONIC SYSTEMS

Theory of Linear Systems Exercises. Luigi Palopoli and Daniele Fontanelli

Module 08 Observability and State Estimator Design of Dynamical LTI Systems

GATE EE Topic wise Questions SIGNALS & SYSTEMS

Chapter 13 Digital Control

6.241 Dynamic Systems and Control

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted.

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Time Response Analysis (Part II)

Inverted Pendulum. Objectives

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Topic # Feedback Control Systems

Why do we need a model?

Module 03 Linear Systems Theory: Necessary Background

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

Riccati Equations and Inequalities in Robust Control

Lecture 9 Infinite Impulse Response Filters

Identification of Linear Systems

Control System. Contents

Pithy P o i n t s Picked I ' p and Patljr Put By Our P e r i p a tetic Pencil Pusher VOLUME X X X X. Lee Hi^h School Here Friday Ni^ht

Automatic Control A. A.A. 2016/2017 July 7, Corso di Laurea Magistrale in Ingegneria Meccanica. Prof. Luca Bascetta.

DIGITAL CONTROLLER DESIGN

Control of Single-Input Single-Output Systems

4F3 - Predictive Control

EEE 184: Introduction to feedback systems

Module 6: Deadbeat Response Design Lecture Note 1

Control Systems Design

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

D(s) G(s) A control system design definition

EE480.3 Digital Control Systems. Part 7. Controller Design I. - Pole Assignment Method - State Estimation

Distributed Real-Time Control Systems

EE480.3 Digital Control Systems. Part 7. Controller Design I. - Pole Assignment Method

Control Systems I. Lecture 2: Modeling and Linearization. Suggested Readings: Åström & Murray Ch Jacopo Tani

Integral action in state feedback control

ESE319 Introduction to Microelectronics. Feedback Basics

Topic # Feedback Control

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

CDS Solutions to Final Exam

Control Systems Design

Department of Electrical and Computer Engineering. EE461: Digital Control - Lab Manual

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

Module 9: State Feedback Control Design Lecture Note 1

Laurea Specialistica in Ingegneria. Ingegneria dell'automazione: Sistemi in Tempo Reale

Digital Control Systems State Feedback Control

Exam in Systems Engineering/Process Control

INTRODUCTION TO DIGITAL CONTROL

4F3 - Predictive Control

Control Systems Design

Stability Analysis Techniques

Output Adaptive Model Reference Control of Linear Continuous State-Delay Plant

Transcription:

Ingegneria dell Automazione - Sistemi in Tempo Reale Selected topics on discrete-time and sampled-data systems Luigi Palopoli palopoli@sssup.it - Tel. 050/883444 Ingegneria dell Automazione - Sistemi in Tempo Reale p.1/28

Outline Representation of a sampled-data system Ingegneria dell Automazione - Sistemi in Tempo Reale p.2/28

DT models of sampled-data systems Using Z transform u(kt) y(t) y(kt) D/A (ZoH) G(s) A/D G(z) Supposed G(s) = H(s)e sλ, λ can be used to model computation delays The presence of a delay makes CT synthesis much more difficult (infinite dimension) Ingegneria dell Automazione - Sistemi in Tempo Reale p.3/28

Example Example: G(s) = e st a with a > 0 s+a Ingegneria dell Automazione - Sistemi in Tempo Reale p.4/28

Example Example: G(s) = e st a with a > 0 s+a Let λ = lt mt, with l N, m [0, 1) Ingegneria dell Automazione - Sistemi in Tempo Reale p.4/28

Example Example: G(s) = e st a with a > 0 s+a Let λ = lt mt, with l N, m [0, 1) G(z) = (1 z 1 )Z[L 1 [ G(s) s ]] Ingegneria dell Automazione - Sistemi in Tempo Reale p.4/28

Example Example: G(s) = e st a with a > 0 s+a Let λ = lt mt, with l N, m [0, 1) G(z) = (1 z 1 )Z[L 1 [ G(s) s ]] G(z) = (1 z 1 )Z[L 1 [e lst ( emst s (1 z 1 )z l Z[L 1 [ emst s emst s+a ] emst s+a )] = Ingegneria dell Automazione - Sistemi in Tempo Reale p.4/28

Example 2 1.5 1 0.5 0 2 1 0 1 2 3 4 8 6 4 2 0 2 1 0 1 2 3 4 Z[ esmt s ] = z z 1 Z[ esmt s+a ] = ze amt z e at G(z) = (1 e amt z+α ), where α = e amt e at z l (z e at ) 1 e amt Ingegneria dell Automazione - Sistemi in Tempo Reale p.5/28

Matlab Control toolbox code 10cm Td = 1.5 a= 1 T = 1 sysc = tf(a, [1 a], td,td); sysd = c2d(sysc,t); Ingegneria dell Automazione - Sistemi in Tempo Reale p.6/28

Effects of delays Due to the delay l poles arose in the origin a zero arose at α α +0 when m 1 (small delay) α + when m 0 (large delay) And now let s review some concepts... Ingegneria dell Automazione - Sistemi in Tempo Reale p.7/28

Zeros and poles Poles are the zeros of the denonimator. A pole p i correspond to a free mode of the system associated with the time function z = p t i Zeros correspond to blocking properties of the the system: z = z i means that there exist initial conditions such that the system has response 0 to the signal z t i Ingegneria dell Automazione - Sistemi in Tempo Reale p.8/28

Zeros and poles - I Example: y(t + 1) ay(t) = u(t + 1) bu(t) Computing the Z transform we get: Y (z) = z z a (y 0 u 0 ) + z b z a U(z) u(t) = b t U(z) = Therefore z z b Y (z) = if y 0 = 1 then Y (z) = 0 z z a (y 0 1) Ingegneria dell Automazione - Sistemi in Tempo Reale p.9/28

Zeros and poles - II A more subtle example: y(t + 1) ay(t) = u(t + 1) au(t) The transfer function is z a ; is it equivalent to 1? z a Ingegneria dell Automazione - Sistemi in Tempo Reale p.10/28

Zeros and poles - II A more subtle example: y(t + 1) ay(t) = u(t + 1) au(t) The transfer function is z a ; is it equivalent to 1? z a NO! The evolution of the system is given by: y(t) = a t y 0 + u(t) Ingegneria dell Automazione - Sistemi in Tempo Reale p.10/28

Zeros and poles - II A more subtle example: y(t + 1) ay(t) = u(t + 1) au(t) The transfer function is z a ; is it equivalent to 1? z a NO! The evolution of the system is given by: y(t) = a t y 0 + u(t) Problems are limited only if a < 1 Ingegneria dell Automazione - Sistemi in Tempo Reale p.10/28

Non-minimum phase zeros Zeros outside of the unit circle correspond to performance limitations Ingegneria dell Automazione - Sistemi in Tempo Reale p.11/28

Non-minimum phase zeros Zeros outside of the unit circle correspond to performance limitations Example: Y (z) = z a U(z) z b with a > 1 Ingegneria dell Automazione - Sistemi in Tempo Reale p.11/28

Non-minimum phase zeros Zeros outside of the unit circle correspond to performance limitations Example: Y (z) = z a U(z) z b with a > 1 Suppose you want the signal c k with c < 1 Ingegneria dell Automazione - Sistemi in Tempo Reale p.11/28

Non-minimum phase zeros Zeros outside of the unit circle correspond to performance limitations Example: Y (z) = z a U(z) z b with a > 1 Suppose you want the signal c k with c < 1 You get U(z) = z(z b) (z a)(z c) Ingegneria dell Automazione - Sistemi in Tempo Reale p.11/28

Non-minimum phase zeros Zeros outside of the unit circle correspond to performance limitations Example: Y (z) = z a U(z) z b with a > 1 Suppose you want the signal c k with c < 1 You get U(z) = z(z b) (z a)(z c) U(z) can be expanded as: U(z) = 1 + a(a b) (a c)(z a) c(c b) (a c)(z c) Ingegneria dell Automazione - Sistemi in Tempo Reale p.11/28

Non-minimum phase zeros Zeros outside of the unit circle correspond to performance limitations Example: Y (z) = z a U(z) z b with a > 1 Suppose you want the signal c k with c < 1 You get U(z) = z(z b) (z a)(z c) U(z) can be expanded as: U(z) = 1 + a(a b) (a c)(z a) c(c b) (a c)(z c) u(t) grows unbounded: exact tracking with finite commands is impossible Ingegneria dell Automazione - Sistemi in Tempo Reale p.11/28

Root locus No delays Ingegneria dell Automazione - Sistemi in Tempo Reale p.12/28

Root locus No delays 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Ingegneria dell Automazione - Sistemi in Tempo Reale p.12/28

Root locus No delays 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 h = 1, m = 0.4 Ingegneria dell Automazione - Sistemi in Tempo Reale p.12/28

Root locus No delays 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 h = 1, m = 0.4 2 1.5 1 0.5 0 0.5 1 1.5 Ingegneria dell Automazione - Sistemi in Tempo Reale p.12/28

Stabilising gains No delays: the system is stabilized for all positive gains Ingegneria dell Automazione - Sistemi in Tempo Reale p.13/28

Stabilising gains No delays: the system is stabilized for all positive gains In the presence of delays we have bounds on stabilising gains: are you able to find them? Ingegneria dell Automazione - Sistemi in Tempo Reale p.13/28

Stabilising gains No delays: the system is stabilized for all positive gains In the presence of delays we have bounds on stabilising gains: are you able to find them? Jury criterion! Ingegneria dell Automazione - Sistemi in Tempo Reale p.13/28

Jury stability criterion Consider the stability of A(z) = a 0 z n + a 1 z n 1 +... + a n Write the following table a 0 a 1... a n 1 a n a n a n 1... a 1 a 0 α n = a n a0 a n 1 0 a n 1 1... a n 1 n 1 a n 1 n 1 a n 1 n 2... a n 1 0 α n 1 = an 1 n 1 a n 1 0... a 0 0 where a k 1 i = a k i α ka k k i, α k = a k k /ak 0 Ingegneria dell Automazione - Sistemi in Tempo Reale p.14/28

The Jury-Criterion Theorem 0 (Jury 1961) If a 0 > 0 then the system has all roots inside the unit circle if and only if all a k 0 with k = 0, 1,..., n 1 are positive. If no a k 0 is zero, then the number of negative a k 0 is equal to the number of roots outside the unit circle. Ingegneria dell Automazione - Sistemi in Tempo Reale p.15/28

The two-dimensional case Consider the stability of A(z) = z 2 + a 1 z + a 2 Jurys table is 1 a 1 a 2 a 2 a 1 1 α 2 = a 2 1 a 2 2 a 1 (1 a 2 ) a 1 (1 a 2 ) 1 a 2 2 α 1 = a 1 a 2 +1 1 a 2 2 a2 1 1 a 2 1+a 2 Imposing conditions in the theorem one gets: a 2 < 1 a 2 > 1 + a 1 a 2 > 1 a 1 Ingegneria dell Automazione - Sistemi in Tempo Reale p.16/28

Going back to our example The equation is z 2 + (kω e at )z + kωα, where ω = 1 e amt, α = e amt e at ω applying the Jury criterion, the system is stable iff e at +1 2e amt e at 1 < k < 1 1 1 < k < min{ e amt e at, e amt e at 1+e at 2e amt e at 1 } 0 < m < log e at 1 2 at otherwise The stabiliy margin decreases with the introduced dealy Ingegneria dell Automazione - Sistemi in Tempo Reale p.17/28

DT models of sampled-data systems Using state space representation Consider a system ẋ = F x + Gu, y = Hx The ZoH equivalent is given by: x((k + 1)T ) = Φx(k) + Γu(k) y = Cx(k) where Φ = e F T, Γ = T 0 ef τ dτg Ingegneria dell Automazione - Sistemi in Tempo Reale p.18/28

Example G(s) = 1/s 2 Ingegneria dell Automazione - Sistemi in Tempo Reale p.19/28

Example G(s) = 1/s 2 State space representations: ẋ = 0 1 x + 0 u, y = [1, 0]x 0 0 1 Ingegneria dell Automazione - Sistemi in Tempo Reale p.19/28

Example G(s) = 1/s 2 State space representations: ẋ = 0 1 x + 0 u, y = [1, 0]x 0 0 1 Φ = e F T = I + F T +... = 1 T 0 1 Ingegneria dell Automazione - Sistemi in Tempo Reale p.19/28

Example G(s) = 1/s 2 State space representations: ẋ = 0 1 x + 0 u, y = [1, 0]x 0 0 1 Φ = e F T = I + F T +... = 1 T 0 1 Γ = [IT + F T 2 /2! + F 2 T 3 /3! +...]G = T 2 /2 T Ingegneria dell Automazione - Sistemi in Tempo Reale p.19/28

What about delay? Consider the system: ẋ = F x + Gu(t λ), y = Hx The general solution is given by x((k +1)T ) = e F T x(kt )+ (k+1)t kt e F ((k+1)t τ Gu(τ λ)dτ Let λ = lt mt, with l N, m [0, 1) 1 0.8 0.6 0.4 0.2 mt 0 1 2 3 4 5 6 7 8 Ingegneria dell Automazione - Sistemi in Tempo Reale p.20/28

Delays We come up with x((k+1)t ) = e F T x(kt )+Γ 1 u((k l)t )+Γ 2 u((k l+1)t ) where:γ 1 = kt +(1 m)t e F (k+1)t τ Gdτ, kt Γ 2 = (k+1)t kt +(1 m)t ef (k+1)t τ Gdτ with the change of variable: η = (k + 1)T τ we get: Γ 1 = T mt ef η Gdη Γ 2 = mt 0 e F η Gdη Ingegneria dell Automazione - Sistemi in Tempo Reale p.21/28

The case l = 1 Let s use x(k) for x(kt ) and u(k) for u(kt ) Ingegneria dell Automazione - Sistemi in Tempo Reale p.22/28

The case l = 1 Let s use x(k) for x(kt ) and u(k) for u(kt ) The DT system is described by x(k + 1) = Φx(k) + Γ 1 u(k 1) + Γ 2 u(k) Ingegneria dell Automazione - Sistemi in Tempo Reale p.22/28

The case l = 1 Let s use x(k) for x(kt ) and u(k) for u(kt ) The DT system is described by x(k + 1) = Φx(k) + Γ 1 u(k 1) + Γ 2 u(k) Introduce a new state variable z(k) = u(k 1) Ingegneria dell Automazione - Sistemi in Tempo Reale p.22/28

The case l = 1 Let s use x(k) for x(kt ) and u(k) for u(kt ) The DT system is described by x(k + 1) = Φx(k) + Γ 1 u(k 1) + Γ 2 u(k) Introduce a new state variable z(k) = u(k 1) The system dynamic equation becomes: x(k + 1) = Φ Γ 1 x(k) + Γ 2 u(k) z(k + 1) 0 0 z(k) 1 y(k) = [H, 0][ x(k) z(k) ] Ingegneria dell Automazione - Sistemi in Tempo Reale p.22/28

The case l > 1 The DT system is described by x(k + 1) = Φx(k) + Γ 1 u(k l) + Γ 2 u(k l + 1) Ingegneria dell Automazione - Sistemi in Tempo Reale p.23/28

The case l > 1 The DT system is described by x(k + 1) = Φx(k) + Γ 1 u(k l) + Γ 2 u(k l + 1) New state variables z 1 (k) = u(k l) z 2 (k) = u(k l + 1)... z l (k) = u(k 1) Ingegneria dell Automazione - Sistemi in Tempo Reale p.23/28

The case l > 1 - I The system dynamic equation becomes: Φ Γ 1 Γ 2... 0 0 x(k + 1) z 1 (k + 1) 0 0 1... 0 x(k) =.................. z 1 (k) 0 + z l (k + 1) 0 0 0... 1...... u(k) z l (k) 0 0 0 0... 0 1 x(k) z 1 (k) y(k) = [H, 0, 0..., 0]... z l (k) Ingegneria dell Automazione - Sistemi in Tempo Reale p.24/28

The case l = 0 Hey, this is prediction not delay? Does it make sense? Ingegneria dell Automazione - Sistemi in Tempo Reale p.25/28

The case l = 0 Hey, this is prediction not delay? Does it make sense? To start with, the system is causal: the predicted value will not manifest itself before the end of the sampling period. Ingegneria dell Automazione - Sistemi in Tempo Reale p.25/28

The case l = 0 Hey, this is prediction not delay? Does it make sense? To start with, the system is causal: the predicted value will not manifest itself before the end of the sampling period. The system with l = 0, m 0 will show the same response at t = 0 that the origal system would show at t = mt Ingegneria dell Automazione - Sistemi in Tempo Reale p.25/28

The case l = 0 Hey, this is prediction not delay? Does it make sense? To start with, the system is causal: the predicted value will not manifest itself before the end of the sampling period. The system with l = 0, m 0 will show the same response at t = 0 that the origal system would show at t = mt This is a tool to study the intersample behaviour (invented by Jury and originally called modified Z transform Ingegneria dell Automazione - Sistemi in Tempo Reale p.25/28

The case l = 0 The DT system is described by x(k + 1) = Φx(k) + Γ 1 u(k) + Γ 2 u(k + 1) Ingegneria dell Automazione - Sistemi in Tempo Reale p.26/28

The case l = 0 The DT system is described by x(k + 1) = Φx(k) + Γ 1 u(k) + Γ 2 u(k + 1) To eliminate u(k + 1) introduce the change of variable ξ(k) = x(k) Γ 2 u(k) Ingegneria dell Automazione - Sistemi in Tempo Reale p.26/28

The case l = 0 The DT system is described by x(k + 1) = Φx(k) + Γ 1 u(k) + Γ 2 u(k + 1) To eliminate u(k + 1) introduce the change of variable ξ(k) = x(k) Γ 2 u(k) After some computation we get: ξ(k + 1) = Φξ(k) + Γu(k) y(k) = Hξ(k) + Ju(k) where Γ = (ΦΓ 2 + Γ 1 ), J = HΓ 2 Ingegneria dell Automazione - Sistemi in Tempo Reale p.26/28

An example Consider a first order system ẋ = fx + gu Ingegneria dell Automazione - Sistemi in Tempo Reale p.27/28

An example Consider a first order system ẋ = fx + gu Γ 1 = R T mt efη gdη = eft e fmt f, Γ 2 = emft 1 f Ingegneria dell Automazione - Sistemi in Tempo Reale p.27/28

An example Consider a first order system ẋ = fx + gu Γ 1 = R T mt efη gdη = eft e fmt f Augmented discrete-time system:, Γ 2 = emft 1 f 2 3 2 3 2 3 2 3 x(k + 1) 4 5 = 4 eft e ft e fmt f 5 4 x(k) 5 + 4 emft 1 f 5 u(k) z(k + 1) 0 0 z(k) 1 Ingegneria dell Automazione - Sistemi in Tempo Reale p.27/28

An example Consider a first order system ẋ = fx + gu Γ 1 = R T mt efη gdη = eft e fmt f Augmented discrete-time system:, Γ 2 = emft 1 f 2 3 2 3 2 3 2 3 x(k + 1) 4 5 = 4 eft e ft e fmt f 5 4 x(k) 5 + 4 emft 1 f 5 u(k) z(k + 1) 0 0 z(k) 1 Control by static feedback u(k) = kx(x) yields the closed loop dynamic: 2 3 x(k + 1) 4 5 = z(k + 1) 2 4 eft + k emft 1 f e ft e fmt f k 0 3 5 Ingegneria dell Automazione - Sistemi in Tempo Reale p.27/28

An example Consider a first order system ẋ = fx + gu Γ 1 = R T mt efη gdη = eft e fmt f Augmented discrete-time system:, Γ 2 = emft 1 f 2 3 2 3 2 3 2 3 x(k + 1) 4 5 = 4 eft e ft e fmt f 5 4 x(k) 5 + 4 emft 1 f 5 u(k) z(k + 1) 0 0 z(k) 1 Control by static feedback u(k) = kx(x) yields the closed loop dynamic: 2 3 x(k + 1) 4 5 = z(k + 1) 2 4 eft + k emft 1 f e ft e fmt f k 0 3 5 Stability can be studied- via Jury criterion - on z 2 (e ft + k emft 1 )z k eft e fmt f f Ingegneria dell Automazione - Sistemi in Tempo Reale p.27/28

Summing up... Delays are relatively easy to model They extend the model with addtional state variables This effect has to be carefully accounted for in control design Ingegneria dell Automazione - Sistemi in Tempo Reale p.28/28