REVUE FRANÇAISE D INFORMATIQUE ET DE

Similar documents
REVUE FRANÇAISE D INFORMATIQUE ET DE

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

REVUE FRANÇAISE D INFORMATIQUE ET DE

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

Séminaire Équations aux dérivées partielles École Polytechnique

A note on the generic solvability of the Navier-Stokes equations

Séminaire de Théorie spectrale et géométrie

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Sheaves and Cauchy-complete categories

RAIRO INFORMATIQUE THÉORIQUE

RAIRO MODÉLISATION MATHÉMATIQUE

ANNALES DE L I. H. P., SECTION C

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

Groupe de travail d analyse ultramétrique

ANNALES DE L I. H. P., SECTION A

INFORMATIQUE THÉORIQUE ET APPLICATIONS

RÜDIGER VERFÜRTH A note on polynomial approximation in Sobolev spaces

INFORMATIQUE THÉORIQUE ET APPLICATIONS

Séminaire Équations aux dérivées partielles École Polytechnique

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

Rendiconti del Seminario Matematico della Università di Padova, tome 88 (1992), p

RAIRO MODÉLISATION MATHÉMATIQUE

ANNALES DE L I. H. P., SECTION B

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

ANNALES DE L I. H. P., SECTION C

ANNALES DE L I. H. P., SECTION B

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

RAIRO MODÉLISATION MATHÉMATIQUE

A. N. IUSEM B. F. SVAITER

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

RAIRO. INFORMATIQUE THÉORIQUE

ANNALES MATHÉMATIQUES BLAISE PASCAL

ANNALES DE L INSTITUT FOURIER

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and Banach spaces

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. A note on the generalized reflexion of Guitart and Lair

ANNALES DE L I. H. P., SECTION A

INFORMATIQUE THÉORIQUE ET APPLICATIONS

Séminaire Équations aux dérivées partielles École Polytechnique

RICHARD HAYDON Three Examples in the Theory of Spaces of Continuous Functions

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

RAIRO ANALYSE NUMÉRIQUE

On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces

Local Lyapunov exponents and a local estimate of Hausdorff dimension

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Groupe de travail d analyse ultramétrique

COMPOSITIO MATHEMATICA

Approximation by finite element functions using local regularization

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Séminaire Brelot-Choquet-Deny. Théorie du potentiel

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p

Séminaire d analyse fonctionnelle École Polytechnique

RAIRO. RECHERCHE OPÉRATIONNELLE

J. H. BRAMBLE V. THOMÉE

COMPOSITIO MATHEMATICA

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

RAIRO. RECHERCHE OPÉRATIONNELLE

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

ANNALES DE L INSTITUT FOURIER

JUAN ENRIQUE SANTOS ERNESTO JORGE OREÑA

COMPOSITIO MATHEMATICA

INFORMATIQUE THÉORIQUE ET APPLICATIONS

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES DE L I. H. P., SECTION C

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

CLAUDE DECHAMPS PAUL JADOT

ANNALES DE L I. H. P., SECTION A

INFORMATIQUE THÉORIQUE ET APPLICATIONS

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

INFORMATIQUE THÉORIQUE ET APPLICATIONS

B. GABUTTI A. OSTANELLO-BORREANI

H. DJELLOUT A. GUILLIN

INFORMATIQUE THÉORIQUE ET APPLICATIONS

Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions

ANNALES DE L I. H. P., SECTION C

ANNALES DE L I. H. P., SECTION C

ANNALES. FLORENT BALACHEFF, ERAN MAKOVER, HUGO PARLIER Systole growth for finite area hyperbolic surfaces

RAIRO. RECHERCHE OPÉRATIONNELLE

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Cahiers de topologie et géométrie différentielle catégoriques, tome 32, n o 2 (1991), p.

The techniques of linear multiobjective programming

ANNALES DE L I. H. P., SECTION B

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and topological vector spaces

RAIRO MODÉLISATION MATHÉMATIQUE

Série Mathématiques. C. RADHAKRISHNA RAO First and second order asymptotic efficiencies of estimators

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Transcription:

REVUE FRANÇAISE D INFORMATIQUE ET DE RECHERCHE OPÉRATIONNELLE, SÉRIE ROUGE SURESH CHANDRA Decomposition principle for linear fractional functional programs Revue française d informatique et de recherche opérationnelle, série rouge, tome 2, n o 2 (1968), p. 65-71. <http://www.numdam.org/item?id=m2an_1968 2_2_65_0> AFCET, 1968, tous droits réservés. L accès aux archives de la revue «Revue française d informatique et de recherche opérationnelle, série rouge» implique l accord avec les conditions générales d utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

RJ.R.O. (2 e année, N 10, 1968, p. 65-72) DECOMPOSITION PRINCIPLE FOR LINEAR FRACTIONAL FUNCTIONAL PROGRAMS by Suresh CHANDRA Department of Mathematics, Indian Institute of Technology, Kanpur (India) Résumé. Le «Principe de décomposition pour des programmes linéaires» est généralisé au cas des programmes fractionnaires. On démontre que pour résoudre un problème compliqué de programmation ayant une fonction fractionnaire\ on doit résoudre une série de problèmes de programmes linéaires qui sont beaucoup plus simples que le problème original. Ce principe peut être appliqué à quelques problèmes spéciaux de programmation fractionnelle. INTRODUCTION From practical point of view, it becomes necessary to consider the large structureel programming problems, but even if it is theoretically possible to solve this problem, in practice it is not always so. There are certain limitations which restrict the endeavours of the analyst. Chief among these limitations is the problem of dimensionality. This suggests the idea of developing methods of solution that should not use simultaneously all the data of the problem. One such approach is the décomposition principle due to Dantzig and Wolf [1] for Linear programs. This principle requires the solution of a series of linear programming problems of smaller size than the original problem. The problem considered in [1] has the following structure :

66 S. CHANDRA 2 A J X J = h o (2) bj C/=l,2,...r) (3) X;^0 0" = l»2,...r) (4) where (i) ^- and Bj are matrices of order (m 0 x «,-) and (mj X /z,-) respectively. (ii) Xj and C,- are vectors having nj components each. (iii) b 0 is an m 0 vector and b, (j= 1, 2,..., r) is an /w, vector. Williams [2] gave a treatment of the transportation problem by Décomposition. The décomposition of Non linear programming problems was also considered by a number of authors, mainly, Rosen [3], Whinston [4], Variya [5] and others. Hère a large structured linear fractional functionals programming (L.F.F.P.) problem is considered with the constraints (2), (3) and (4), and it is shown that for solving this problem we have to solve a series of smaller sized linear programming problems. The mathematical formulation of the problem is as follows : Z = «=! i (5) constraints (2) and (3) and (4), where ûj is a vector having rij components and u & v are given scalars. Apart from the usual assumptions of L.F.F.P., it is assumed that the set Sj of ail X, ^ 0 satisfying B s Xj = bj is a convex polyhedron. We shall call this as Problem 04). The paper is dealt into three sections. Section I considers the preliminaries and the main principle is developed in Section II. In Section III, its application is discussed in some special problems. Preliminaries : SECTION I (i) Any point in a convex polyhedron can be written as a convex linear combination of the extreme points and conversely every such point belongs tö the polyhedron [6]. (ii) For the L.F.F.P. problem

DECOMPOSITION PRINCIPLE 67 Z d'x + d 0 Ax = b x 5* 0 the optimality criterion given by Kantiswarup [7] is that : A. = [V 2 (Cj - 2 ) - V t (dj-zf)] < 0 for j = 1, 2,..., n. Hère ^4 is a (m x n) matrix, C & d are vectors having n components each, C o and d 0 are given scalars. If B is the basis matrix, and C B and d B are cost vectors corresponding to this basis matrix, then : b + C o ; V 2 = Zj 2) = d A = [a l5 a 2).-, a ] = B SECTION n Let x%j dénote the extreme points of the convex set of feasible solutions to ^y = b j9 xj ^ 0 (j = l, 2,... r). Since the set Sj is a convex polyhedron, we have Xj Sj if and only if there exist y kj such that ft/ X J - 2 YkjX kj Ykj ^0 (*: - 1, 2,..., A y ) * - 1 (6) In view of (5), the problem 04) is equivalent to the following problem : 7 == -* hi

68 S. CHANDRA, r hj j=lk=l 4j = *>o kj = h y kj > 0 (7) Let us write : fi? = à}x kj q*y = foy, e,-) ; (j = 1, 2,... r ; À; = 1, 2,... A,) b = (b Os 1') Where e s is thej th unit vector having r - components and Y is a r - component vector, each component being 1. Then the above problem becomes :, F r hj 22- r r hi [22 2 2 JkjqkJ = b j=ifc=i Ykj > 0 We call this as problem (B). It is to be noted that problem (B) has (m 0 + r) r constraints while problem (^4) has V m i constraints, thus in gênerai requiring j = 0 a smaller basis than problem (^4). We shall show that it is not necessary to generate every extreme point, bef ore the problem is solved. p^-, f[) } and fffi can be generated, as they are used. We now apply resuit (ii) of Section I to the problem (B). Let B is any basis matrix (of order (m 0 + r)) for problem (B) and y B = B~*bis the basic feasible solution. Let : and a (2 > = (a\ 2 \ o< 2 2 >) = (tf >)'* H where

DECOMPOSITION PRINCIPLE 69 contains the first m 0 components of o (1) and a ( t 2) contains the last r components of o (1). Similarly o< 2) is partitioned. Then but as in [7] where a^j ls ^e J th component of a^. Similarly / ƒ (2) Z^) = (d' G i2) A )X * (T (2> Hence from (8) : àv - [K 2 (q - <*{%) - F A (d; - o< 2 U y )K + [vaf - va?] (9) where V x and V 2 dénote respectively the values of numerator and denominator of the objective function of problem {S) at the basic feasible solution Now Max A kj - ^ 0, then the solution under considération is optimal, ail k &j otherwise more itérations are required, but Max à kj = Max [Max A u,..., Max A fcr ] (10) Jt & j k k From (9), for a given j, Max A fcj occurs at an extreme point of Sj. Let k Since each extreme point x kj is a basic feasible solution to BJXJ = bj we have : Max A fcj. = [ViG 2 j ^2^2/] + Zj k where Z? is the optimal value of the j th (j 1, 2,..., r) problem ; Zj = b,- Moreover, an optimal basic solution to (11) gives an extreme point x^- for which the corresponding Akj is maximum over k. Knowing this xjy the corresponding p^, fff Sc fff can be generated accordingly. Now Max A fci - Max [Z? + where the max is taken, say, for j = S. If x r s is an optimal extreme point of (11) for j S, and p rs = ^sx r s, q rs = (p, e s ) (11) -V 2 a > (12)

70 S. CHANDRA then q, s enters the basis at the next itération. The vector to leave the basis is determined in the usual way. Next the problem (B) is transformed to get the new values of i?" 1, o< 1 >,o^2> and YB- AS before the new values of a (1) and o (2 > are used to détermine a new set of r linear programming problems. By solving theses r new linear programming problems, we détermine the vector to enter the basis as before. In the absence of degeneracy (of course degeneracy can be handled in the usual way), the above process terminâtes in a finite number of steps by the theory of simplex method for L.F.F.P. SECTION m As in case of linear programming [6], [8] the technique developed in Section II, can be applied to the following L.F.F.P. Problems : L Generalized L.F.F.P. Problem x y ^ 0 where the vectors a,- are not specified but they are restricted such that Bjüj < bj (j 1, 2?..., r). ït is assumed that these inequalities détermine a convex polyhedron ([6]). n. L.F.F.P. with upper bonds on the variables Z [dixi + é' 2 x 2 + v] A 2 x 2 = 5x 2 >0 (13)

DECOMPOSITION PRINCIPLE 71 where A l9 A 2 are matrices of order (m x n x ) and (m X n 2 ) respectively and / is a («! X n x ) identity matrix. This problem can be solved by using the technique of Section II, as in [8]. ACKNOWLEDGEMENTS I am extremely thankful to Prof. J. N. Kapur and Dr. S. K. Gupta, Department of Mathematics, ïndian Institute of Technology, Kanpur, for their continued help and inspiring guidance. REFERENCES [1] DANTZIG, C. B. and Philip WOLF, «Décomposition Principîe for Linear Programs», Opérations Research, vol. 8 (1960), pp. 101-111. [2] WILLIAMS, A. C, «A Treatment of the Transposition problem by Décomposition», /. Soc. Indust. and App. Math., 10 (1962), pp. 35-48. [3] ROSEN, J. B., «Convex Partition Programming», Recent Advances in Math. Programming (1963). [4] WHINSTON, A., «A dual décomposition algorithm for Quadratic Programming», Cahiers du centre d'études Research Opérationnelle, 6 (188-201) (1964). [5] VARIYA, P., «Décomposition of large scale Systems», SIAM, vol. 4 (1966), n 1. [6] HADLEY, G., Linear Programming, Addison-Wesley Publishing Company, Inc. (1963). [7] KANTISWARUP, «Linear fractional functionals Programming», Opérations Research, vol. 13, n 6 (1965), pp. 1029-1036. [8] HADLEY, G., Non-Hnear and Dynamic Programming y Addison-Wesley Publishing Company, Inc. (1964).