Numerical simulation of dispersive waves

Similar documents
Resonant wave run-up on sloping beaches and vertical walls

On the nonlinear dynamics of the traveling-wave solutions of the Serre system

On weakly singular and fully nonlinear travelling shallow capillary gravity waves in the critical regime

Modified Serre Green Naghdi equations with improved or without dispersion

Algebraic geometry for shallow capillary-gravity waves

Mathematical modelling of tsunami wave generation

RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING

ON THE GALERKIN / FINITE-ELEMENT METHOD FOR THE SERRE EQUATIONS

Numerical simulation of a solitonic gas in KdV and KdV-BBM equations

Well-balanced shock-capturing hybrid finite volume-finite difference schemes for Boussinesq-type models

Extreme wave runup on a vertical cliff

On the Whitham Equation

NUMERICAL INVESTIGATION OF THE DECAY RATE OF SOLUTIONS TO MODELS FOR WATER WAVES WITH NONLOCAL VISCOSITY

Advances and perspectives in numerical modelling using Serre-Green Naghdi equations. Philippe Bonneton

NUMERICAL SIMULATION OF LONG WAVE RUNUP ON A SLOPING BEACH*

EXTREME WAVE RUN-UP ON A VERTICAL CLIFF

Tsunami wave impact on walls & beaches. Jannette B. Frandsen

Energy of tsunami waves generated by bottom motion arxiv: v2 [physics.ao-ph] 23 Oct 2008

arxiv: v1 [physics.flu-dyn] 30 Oct 2014

Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations

Shoaling of Solitary Waves

arxiv: v1 [physics.flu-dyn] 14 Jun 2014

A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system

The Whitham equation with surface tension

3 where g is gravity. S o and S f are bed slope and friction slope at x and y direction, respectively. Here, friction slope is calculated based on Man

Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations

Finite Volume Schemes: an introduction

Shock Waves & Solitons

Modeling and simulation of bedload transport with viscous effects

Tsunami Load Determination for On-Shore Structures. Harry Yeh Oregon State University

NUMERICAL SOLITARY WAVE INTERACTION: THE ORDER OF THE INELASTIC EFFECT

BBM equation with non-constant coefficients

Families of steady fully nonlinear shallow capillary-gravity waves

Primary Results on Simulation of a New Kind Traveling Wave. of Permanent Form

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the

Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations

Basics of surface wave simulation

Modelling of Tsunami Waves

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons.

A Kinematic Conservation Law in Free Surface Flow

Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin Bona Mahony Burger (BBMB) Equation

Violent Sloshing H.Bredmose M.Brocchini D.H.Peregrine L.Thais

Symmetry reductions and exact solutions for the Vakhnenko equation

My doctoral research concentrated on elliptic quasilinear partial differential equations of the form

Lecture 1: Water waves and Hamiltonian partial differential equations

BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS

is large when compared to the undisturbed water depth h, and that the Stokes

Maejo International Journal of Science and Technology

Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially Integrable Equations

NONLINEAR(PROPAGATION(OF(STORM(WAVES:( INFRAGRAVITY(WAVE(GENERATION(AND(DYNAMICS((

Tsunami modeling. Philip L-F. Liu Class of 1912 Professor School of Civil and Environmental Engineering Cornell University Ithaca, NY USA

Breather propagation in shallow water. 1 Introduction. 2 Mathematical model

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves

Non-Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite Volume and Finite Difference Scheme.

B O S Z. - Boussinesq Ocean & Surf Zone model - International Research Institute of Disaster Science (IRIDeS), Tohoku University, JAPAN

arxiv: v1 [math.na] 27 Jun 2017

arxiv: v1 [physics.flu-dyn] 22 Jan 2016

Visco-potential free-surface flows and long wave modelling

The Force of a Tsunami on a Wave Energy Converter

Global well-posedness and decay for the viscous surface wave problem without surface tension

Recovering water wave elevation from pressure measurements

NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS

Kelvin-Helmholtz instabilities in shallow water

Research Article Linearized Shallow-water Wave Theory of Tsunami Generation and Propagation by Three-dimensional Stochastic Seismic Bottom Topography

Waves on deep water, II Lecture 14

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract

A short tutorial on optical rogue waves

Hydrodynamic Modes of Incoherent Black Holes

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory

Procedia Computer Science

On the leapfrogging phenomenon in fluid mechanics

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

Exact solutions through symmetry reductions for a new integrable equation

Recovering water wave elevation from pressure measurements

Fission of a longitudinal strain solitary wave in a delaminated bar

On the Equation of Fourth Order with. Quadratic Nonlinearity

Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

Available online at J. Math. Comput. Sci. 2 (2012), No. 1, ISSN:

Vortex knots dynamics and momenta of a tangle:

Head-on collisions of electrostatic solitons in nonthermal plasmas

Spectral dynamics of modulation instability described using Akhmediev breather theory

Pattern Formation and Chaos

arxiv: v2 [math.ap] 18 Dec 2012

Strongly nonlinear long gravity waves in uniform shear flows

Laser wakefield electron acceleration to multi-gev energies

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS)

Mathematical and computational modeling for the generation and propagation of waves in marine and coastal environments

Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas

The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and inundation

Convection. U y. U u(y) T s. T y

Stability and Shoaling in the Serre Equations. John D. Carter. March 23, Joint work with Rodrigo Cienfuegos.

Emmanuel PLAUT. Example of an hypertext Report written with L A TEX. This is a public document.

Asymptotic models for internal waves in Oceanography

FullSWOF a software for overland flow simulation

NEW EXACT SOLUTIONS OF SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS VIA THE IMPROVED EXP-FUNCTION METHOD

Quasi-periodic solutions of the 2D Euler equation

Elliptic Solutions and Solitary Waves of a Higher Order KdV-BBM Long Wave Equation

FDM for wave equations

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Transformation of irregular waves in the inner surf zone

Transcription:

Numerical simulation of dispersive waves DENYS DUTYKH 1 Chargé de Recherche CNRS 1 LAMA, Université de Savoie 73376 Le Bourget-du-Lac, France Colloque EDP-Normandie DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 1 / 25

Acknowledgements Special thanks to: Frédéric Dias: Professor, ENS Cachan on leave to: University College Dublin Collaborators: Dimitrios Mitsotakis: Post-Doc, Paris-Sud, Orsay Theodoros Katsaounis: Assistant professor, Crete DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 2 / 25

Coastal hydrodynamics Physical motivation for this study Tsunami hazard estimation Harbour protection Ship generated waves Beach erosion by wave generated currents DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 3 / 25

Water wave problem - I Physical setting and assumptions z h() (, t) H(, t) O Physical assumptions: Fluid is perfect: Re = Flow is incompressible: u =... and irrotational: ω = u = Free surface is a graph z = (, t) Above free surface there is void DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 4 / 25

Water wave problem - II Mathematical setting the governing equations Continuity equation: u = ( φ) = φ = 2 φ+ 2 zz φ =, (, z) Ω [ h,] Free surface kinematic condition: t + φ z φ =, z = (, t) Free surface dynamic condition (free surface isobarity): t φ+ 1 2 φ 2 + 1 2 ( zφ) 2 + g =, z = (, t) Bottom kinematic condition: φ h+ z φ =, z = h( ) DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 5 / 25

Dispersive long wave models Boussinesq-type equations Long wave (Boussinesq) scaling: Nonlinearity: ε := a h 1 Dispersion: µ 2 := ( h l ) 2 1 Stokes-Ursell number: S := ε µ 2 1 BCS (22); DL et al. (25): T = O( 1 ε ) t + u +ε(u) +ε[au b t ] = u t + +εuu +ε[c du t ] = DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 6 / 25

Conservative form of governing equations Flat bottom 1D case Boussinesq equations: (I D)v t +[F(v)] +[G(v )] = Conservative variables: v := (, u) Advective flu: F(v) = ( (1+)u, + 1 2 u2) Elliptic operator: I D = diag(1 b 2, 1 d 2 ) Dispersion: G(v ) = ( au, c ) Reference: D. Dutykh, T. Katsaounis, D. Mitsotakis. Finite volume schemes for dispersive wave propagation and runup. Submitted. 21 http://hal.archives-ouvertes.fr/hal-472431/ DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 7 / 25

Finite volume schemes for dispersive waves Ref: Dutykh, Katsaounis, Mitsotakis (hal-472431) (I D)v t +[F(v)] +[G(v )] = Advective flues: m-flu, KT, FVCF Reconstructions: TVD MUSCL2, UNO2, WENO3 Elliptic operator: 2nd or 4th order FD: (I D)v v i 1 + 1v i + v i+1 (b, d) v i+1 2v i + v i 1 12 2 Dispersion: Centered flu: G m i+ 1 2 = (a, c) v(2) i + v (2) i+1, G lm 2 i+ 1 2 Time stepping: Eplicit SSP-RK2, SSP-RK3 v (2),L + v (2),R i+ = (a, c) 1 i+ 1 2 2 2 DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 8 / 25

Solitary wave propagation Convergence tests for Bona-Smith system Bona-Smith system (we take θ 2 = 8 1 ): t + u +(u) 3θ2 1 6 t =, u t + + uu + 2 3θ2 3 3θ2 1 6 u t =. Eact solitary wave solution: (ξ) = sech 2 (λξ), u(ξ) = B(ξ), ξ := c s t = 9 2 θ2 7/9 1 θ 2, c s = 4(θ 2 2/3) 2(1 θ 2 )(θ 2 1/3) Ivariants: mass conservation I = (, t) d R ( I 1 = 2 (, t)+(1+(, t))u 2 (, t) c(, 2 t) au 2 (, t) ) d R DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 9 / 25

Convergence test-cases - I Numerical results on the solitary wave propagation ( ) 1/2 Eh 2 (k) = Uk h / U h, U k h = Ui k 2, Eh (k) = U k h, / U h,, U k h, = ma U k i i, i Rate(Eh 2) Rate(E h ).5 1.91 1.978.25 1.91 1.954.125 1.923 1.937.625 1.936 1.941.3125 1.946 1.948 Rate(Eh 2) Rate(E h ).5 2.42 2.32.25 2.33 2.29.125 2.26 2.23.625 2.21 2.19.3125 2.17 2.16 Table: m-flu Table: MUSCL2 MinMod DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 1 / 25

Convergence test-cases - II Invariants preservation Numerical parameters: [ 5, 5], T = 2, =.1, CFL =.5; = 1 2 Mass conservation: I h = 1.932183566158.51 1.5.5 1.45.49 1.4 U h,.48.47 I h 1 1.35 1.3.46 1.25.45 CF UNO2 CF TVD2 average.44 2 4 6 8 1 12 14 16 18 2 t (a) -amplitude 1.2 CF UNO2 CF TVD2 average 1.15 2 4 6 8 1 12 14 16 18 2 t (b) I 1 invariant DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 11 / 25

Head-on collision of solitary waves Comparison with eperimental data Comparison among following models: Eperimental data BBM-BBM system Bona-Smith system (θ 2 = 9 11 ) Numerical scheme: FVCF + UNO2 + SSP-RK3 Numerical parameters: [ 3, 3], =.5, CFL =.2 Reference: W. Craig, Ph. Guyenne, J. Hammack, D. Henderson, C. Sulem. Solitary water wave interactions. Phys. Fluids, 26 DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 12 / 25

Head-on collision eperiment Comparison with eperimental data by D. Henderson 3 2.5 Bona Smith θ 2 =9/11 BBM BBM Eperimental data 2 1.5 1.5.5 3 2 1 1 2 3 Figure: t = 18.29993 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

Head-on collision eperiment Comparison with eperimental data by D. Henderson 3 2.5 Bona Smith θ 2 =9/11 BBM BBM Eperimental data 2 1.5 1.5.5 3 2 1 1 2 3 Figure: t = 18.867 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

Head-on collision eperiment Comparison with eperimental data by D. Henderson 3 2.5 Bona Smith θ 2 =9/11 BBM BBM Eperimental data 2 1.5 1.5.5 3 2 1 1 2 3 Figure: t = 19.956 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

Head-on collision eperiment Comparison with eperimental data by D. Henderson 3 2.5 Bona Smith θ 2 =9/11 BBM BBM Eperimental data 2 1.5 1.5.5 3 2 1 1 2 3 Figure: t = 19.1587 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

Head-on collision eperiment Comparison with eperimental data by D. Henderson 3 2.5 Bona Smith θ 2 =9/11 BBM BBM Eperimental data 2 1.5 1.5.5 3 2 1 1 2 3 Figure: t = 19.19388 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

Head-on collision eperiment Comparison with eperimental data by D. Henderson 3 2.5 Bona Smith θ 2 =9/11 BBM BBM Eperimental data 2 1.5 1.5.5 3 2 1 1 2 3 Figure: t = 19.3294 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

Head-on collision eperiment Comparison with eperimental data by D. Henderson 3 2.5 Bona Smith θ 2 =9/11 BBM BBM Eperimental data 2 1.5 1.5.5 3 2 1 1 2 3 Figure: t = 19.84514 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

Head-on collision eperiment Comparison with eperimental data by D. Henderson 3 2.5 Bona Smith θ 2 =9/11 BBM BBM Eperimental data 2 1.5 1.5.5 3 2 1 1 2 3 Figure: t = 2.49949 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

Further numerical eperiments Additional test-cases: Overtaking solitary waves collision Dispersive shock wave formation (conservation of invariants, etc.).9.8.7.6.5.4.3.2.1.1 4 3 2 1 1 2 3 4 t= t=2 Reference: D. Dutykh, T. Katsaounis, D. Mitsotakis. Finite volume schemes for dispersive wave propagation and runup. Submitted. 21 http://hal.archives-ouvertes.fr/hal-472431/ DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 14 / 25

Dispersive wave runup computation Numerically stiff and tricky problem P. Madsen et al. (1997): However, to make this technique [slot technique] operational in connection with Boussinesq type models a couple of problems call for special attention. [...] Firstly the Boussinesq terms are switched off at the still water shoreline, where their relative importance is etremely small anyway. Hence in this region the equations simplify to the nonlinear shallow water equations. G. Belotti & M. Brocchini (22): In our attempt to use these equations from intermediate waters up to the shoreline we run into numerical troubles when reaching the run-up region, i.e. >. These problems were essentially related to numerical instabilities due to the uncontrolled growth of the dispersive contributions (i.e. O(µ 2 )-terms). DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 15 / 25

Boussinesq-type equations for non-flat bottom The celebrated Peregrine system (1967) Peregrine system in its original form: t + ( (h+)u ) =, u t + uu + g h 2 (hu) t + h2 6 u t = Reference: D.H. Peregrine. Long waves on a beach. JFM, 1967 Vertical translations (group G 5, Benjamin & Olver (1982)): z z+d, d, h h+d, u u, This symmetry is broken, only H = h+ remains invariant DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 16 / 25

Peregrine system invariantization Invariantization under vertical translations + conservative form of equations Pre-conservative form: H t +(Hu) =, (Hu) t + ( εhu 2 + 1 2ε H2) µ2( Hh 2 (hu) t Hh2 ) 6 u t Using h = H +O(ε), H t = O(ε), Q = Hu: = 1 ε Hh H t + Q = ( (1+ 1 3 H2 1 6 HH ) 1 Q 3 H2 Q 1 ) ( Q 2 3 HH Q + t H +g 2 H2) = ghh New system is asymptotically equivalent to the original one Symmetry G 5 is recovered Dispersive terms naturally near the shoreline DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 17 / 25

m-peregrine system discretization With finite volumes method [D(v)] t +[F(v)] = S(v) Advection: KT, FVCF + MUSCL2, UNO2 Dispersion: 2nd order FD ( ) H D(v) = (1+ 1 3 H2 1 6 HH )Q 1 3 HH Q H2 3 Q Source terms: Well-balanced hydrostatic reconstruction Time stepping: Eplicit SSP-RK3 Reference: D. Dutykh, T. Katsaounis, D. Mitsotakis. Finite volume schemes for dispersive wave propagation and runup. Submitted. 21 http://hal.archives-ouvertes.fr/hal-472431/ DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 18 / 25

W.M. Keck Laboratory of Hydraulics, Caltech PhD thesis of Costas Synolakis DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 19 / 25

Solitary wave runup on a plane beach Eperiments by C. Synolakis (1987), Caltech D H β Bottom shape: Initial condition: h() = { tanβ, cotβ, 1, > cotβ, () = A s sech 2 () (λ( X )), u () = c s D + () DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 2 / 25

Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = 2.88.3.25.2 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.15.1.5.5.1.15.2 1 5 5 1 15 2 Figure: t = 2 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = 2.88.3.25.2 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.15.1.5.5.1.15.2 1 5 5 1 15 2 Figure: t = 26 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = 2.88.3.25.2 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.15.1.5.5.1.15.2 1 5 5 1 15 2 Figure: t = 32 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = 2.88.3.25.2 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.15.1.5.5.1.15.2 1 5 5 1 15 2 Figure: t = 38 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = 2.88.3.25.2 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.15.1.5.5.1.15.2 1 5 5 1 15 2 Figure: t = 44 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = 2.88.3.25.2 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.15.1.5.5.1.15.2 1 5 5 1 15 2 Figure: t = 5 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = 2.88.3.25.2 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.15.1.5.5.1.15.2 1 5 5 1 15 2 Figure: t = 56 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = 2.88.3.25.2 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.15.1.5.5.1.15.2 1 5 5 1 15 2 Figure: t = 62 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

Solitary wave runup: A s =.28 DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 22 / 25

Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = 2.88 1.5 1 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.5.5 1 1 5 5 1 15 2 Figure: t = 1 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = 2.88 1.5 1 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.5.5 1 1 5 5 1 15 2 Figure: t = 15 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = 2.88 1.5 1 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.5.5 1 1 5 5 1 15 2 Figure: t = 2 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = 2.88 1.5 1 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.5.5 1 1 5 5 1 15 2 Figure: t = 25 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = 2.88 1.5 1 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.5.5 1 1 5 5 1 15 2 Figure: t = 3 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = 2.88 1.5 1 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.5.5 1 1 5 5 1 15 2 Figure: t = 45 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = 2.88 1.5 1 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.5.5 1 1 5 5 1 15 2 Figure: t = 55 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = 2.88 1.5 1 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.5.5 1 1 5 5 1 15 2 Figure: t = 6 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = 2.88 1.5 1 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.5.5 1 1 5 5 1 15 2 Figure: t = 7 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = 2.88 1.5 1 Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data.5.5 1 1 5 5 1 15 2 Figure: t = 8 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

Conclusions Several schemes to discretize dispersive wave equations have been proposed FVs are sufficiently accurate for solitons dynamics Dispersive effects are beneficial for breaking wave description DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 24 / 25

Thank you for your attention! http://www.lama.univ-savoie.fr/ dutykh/ DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 25 / 25