Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Similar documents
Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Confining ultracold atoms on a ring in reduced dimensions

Lecture 3. Bose-Einstein condensation Ultracold molecules

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Cold fermions, Feshbach resonance, and molecular condensates (II)

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

NanoKelvin Quantum Engineering

Artificial Gauge Fields for Neutral Atoms

Ultracold Fermi Gases with unbalanced spin populations

COPYRIGHTED MATERIAL. Index

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Spin orbit coupling in Bose Einstein condensate and degenerate Fermi gases

Ytterbium quantum gases in Florence

A study of the BEC-BCS crossover region with Lithium 6

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Ultracold atoms and molecules

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions

Lecture 4. Feshbach resonances Ultracold molecules

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

Vortices and other topological defects in ultracold atomic gases

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Introduction to cold atoms and Bose-Einstein condensation (II)

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

Reference for most of this talk:

Universal trimers in spin-orbit coupled Fermi gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Experiments with an Ultracold Three-Component Fermi Gas

From laser cooling to BEC First experiments of superfluid hydrodynamics

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

A Mixture of Bose and Fermi Superfluids. C. Salomon

Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Design and realization of exotic quantum phases in atomic gases

Transport of Bose-Einstein condensate in QUIC trap and separation of trapping spin states

Cooperative Phenomena

A Mixture of Bose and Fermi Superfluids. C. Salomon

(Noise) correlations in optical lattices

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

1. Cold Collision Basics

The amazing story of Laser Cooling and Trapping

Fermi Condensates ULTRACOLD QUANTUM GASES

Development of a compact Yb optical lattice clock

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1

Observation of Feshbach resonances in ultracold

Ultracold molecules - a new frontier for quantum & chemical physics

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Superfluidity in interacting Fermi gases

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

High-Temperature Superfluidity

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani

Quantum Physics II (8.05) Fall 2002 Outline

Strongly Correlated Physics With Ultra-Cold Atoms

Loop current order in optical lattices

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Superfluid Density of a Spin-orbit Coupled Bose Gas

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Quantum Mechanics: Fundamentals

Laser Cooling and Trapping of Atoms

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

arxiv:quant-ph/ v2 5 Feb 2001

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Strongly correlated Cooper pair insulators and superfluids

Measuring Entanglement Entropy in Synthetic Matter

BEC and superfluidity in ultracold Fermi gases

A novel 2-D + magneto-optical trap configuration for cold atoms

Superfluidity and Superconductivity Macroscopic Quantum Phenomena

Quantum Transport in Ultracold Atoms. Chih-Chun Chien ( 簡志鈞 ) University of California, Merced

BEC meets Cavity QED

Spin-orbit-coupled quantum gases to be held at KITPC Beijing from August 1 to 19, Schedule of talks

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Exploring long-range interacting quantum many-body systems with Rydberg atoms

arxiv: v1 [cond-mat.quant-gas] 29 Aug 2012

PHYS598 AQG Introduction to the course

Bose-Einstein condensates in optical lattices

Probing dynamical properties of Fermi-Hubbard systems with a quantum gas microscope Peter Brown Bakr Lab Solvay workshop, February 19 th 2019

Quantum Quenches in Chern Insulators

Quantum Electrodynamics with Ultracold Atoms

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Topological Bandstructures for Ultracold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Quenched BCS superfluids: Topology and spectral probes

Chapter 2 Experimental Realization of One-Dimensional Bose Gases

Matter wave interferometry beyond classical limits

Transcription:

QC12, Pohang, Korea Experimental realization of spin-orbit coupling in degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, P.R.China

Outline Motivation: Quantum simulation with ultracold atoms Experimental realization of spin-orbit coupling in degenerate Fermi gas Raman Rabi oscillation Momentum distribution asymmetry Topological change of Fermi surface Momentum-resolved RF spectroscopy of spin-orbit coupling degenerate Fermi gas Spin-orbit coupling Feshbach molecules

Quantum simulation with ultracold atoms We can control the Hamiltonian of cold atoms in a number of ways 2 p Ĥ= + V(x) + U 2m int eraction Kinetic: Synthetic vector potential Potential: Optical lattice Interaction: Feshbach resonance For a particle with charge q, moving in an electromagnetic field, the Hamiltonian can be expressed as: 2 (p qa) Ĥ = + V(x) 2m Vector potential: A Magnetic field: B= A Once we could construct such a Hamiltonian for the neutral atoms, we can simulate the charged particle with neutral atoms!!

Ultracold atoms simulate charged particle To simulate Lorenz Force: To understand Quantum Hall Effect? To form the topological insulator Topological Quantum Computing Nobel Prize 1985 Quantum Hall Effect Nobel Prize 1998 Fractional Quantum Hall Effect

Experimental Progress Synthetic magnetic fields for BEC Effective Vector Potential generation: Raman coupling Vortices are formed in condensates Y.-J. Lin, et.al., Nature 462, 628 (2009) Electric field generation Y.-J. Lin, et.al., PRL 102, 130401 (2009) Spin-Orbit coupling Y.-J. Lin, et.al., Nature Physics 7, 531 (2011) Synthetic Partial Waves in Atomic Collisions Y. -J. Lin, et.al., Nature 417, 83 (2011) Science 335, 314 (2012)

BEC in light-induced vector gauge potential using the 1064 nm optical dipole trap lasers Collective Dipole Oscillation of spin-orbit coupling BEC B University of Science and Technology of China, Shuai Chen and Jian-Wei Pan s group Z. Fu, P. Wang, S. Chai, L. Huang, J. Zhang, Phys. Rev. A 84, 043609 (2011) S. Chen, J. Y. Zhang, S. C. Ji, Z. Chen, L. Zhang, Z. D. Du, Y. J. Deng, H. Zhai, and J. W. Pan, arxiv:1201.6018.

Ultracold atoms in light-induced vector gauge potential Bosons and Fermions Integer spin Half-integer spin Atoms in a harmonic potential. T = 0 E F = k b T F (two spin states) Bose-Einstein condensation NIST,SXU,USTC Degenerate Fermi gas SXU, MIT

Experimental realization of spin-orbit coupling in degenerate Fermi gas Raman laser 2 773 nm Raman laser 1 773 nm 766.7 nm B Raman laser 2 773 nm 770.1 nm Raman laser 1 773 nm 2 773 nm 1 Energy@GHzD 0 10.4 MHz 9/2,9/2 9/2,7/2 9/2,9/2> T=0.3 Tf -1 9/2,-9/2-2 0 200 30 G400 600 800 B@GD 9/2,7/2> 9/2,7/2> 9/2,5/2> δ 170 KHz

Theoretical model of two-level system 2 2 p δ Ω Ω H= Iˆ + σˆ ˆ ˆ ˆ ˆ (NIST group s SO Coupling) z + σxcos(2k Rx) σysin(2k Rx) 2m 2 2 2 Base: ikrx e 0 U = ikrx 0 e Translate unitary transformation two energy eigenvalues: two dressed eigenstates: SG Spin-orbit coupled form Raman laser

SO Coupled Fermi Gases: Raman Rabi Oscillation First prepare fermion in 9/2, and then turn on Raman coupling with square envelop pulse t P. Wang, Z. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, arxiv:1204.1887 appear in Phys. Rev. Lett.

Raman coupling with Gaussian envelop pulse t

SO Coupled Fermi Gases: Equilibrium Momentum distribution Break spatial reflectional symmetry: Preserve reversal symmetry: Time of flight measurement with Stern-Gerlach effect P. Wang, Z. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, arxiv:1204.1887 appear in Phys. Rev. Lett.

SO Coupled Fermi Gases: Equilibrium Momentum distribution Break spatial reflectional symmetry: Preserve time reversal symmetry:

SO Coupled Fermi Gases: Momentum distribution in helical bases (A) Double peak structure gradually disappears (B) Significant population in higher branch T=0.6-0.7 Tf (A) Double peak structure in lower branch (B) Small population in higher branch

Momentum-resolved RF spectroscopy of non-interacting SO coupling Fermi gas -4-2 0 2 4 9/2,5/2> Angle resolved photoemission spectroscopy ARPES) -4-2 0 2 4 Ez : the energy split of the two Zeeman states : energy-momentum dispersion of the initial state : energy-momentum dispersion of the final state (empty state)

Momentum-resolved RF spectroscopy of non-interacting Fermi gas without SO coupling When: = When we know: Then:

Momentum-resolved RF spectroscopy of non-interacting SO coupling Fermi gas δ=0 Ω=1.5Er When we know: Then:

Momentum-resolved RF spectroscopy of non-interacting SO coupling Fermi gas δ=0 δ=1 Er

Momentum-resolved RF spectroscopy of non-interacting SO coupling Fermi gas Adiabatically change the trap frequency

Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, M. W. Zwierlein, arxiv:1205.3483-4 -2 0 2 4 ν RF -4-2 0 2 4 When we know: Then: :SO coupling

RF spectroscopy of strongly interacting ultracold Fermi gas 9/2,-7/2 ω Z 23 9/2,-9/2 S-wave B 0 = 202.2 G 9/2,-9/2 + 9/2,-7/2 BEC BCS Crossover molecules α>0 Crossover Feshbach resonance Cooper pairs weak coupling α<0 RF mixer localized pairs Nonlocalized pairs

RF spectroscopy of strongly interacting ultracold Fermi gas C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature 424, 47 (2003)

Momentum-resolved Raman spectroscopy of non-interacting ultracold Fermi gas T.-L. Dao, I. Carusotto, and A. Georges, Phys. Rev. A 80, 023627 (2009) Ez : the energy split of the two Zeeman states : energy-momentum dispersion of the initial state : energy-momentum dispersion of the final state

Momentum-resolved Raman spectroscopy of non-interacting ultracold Fermi gas First prepare fermion in 9/2, and then turn on Raman coupling pulse. When: = = P. Wang, Z. Fu, L. Huang, and J. Zhang, Phys. Rev. A 85, 053626 (2012); arxiv:1205.1110

Momentum-resolved Raman spectroscopy of bound molecules in strongly interacting ultracold Fermi gas RF mixer Raman First prepare fermion mixture in -9/2 and -7/2, and ramp the magnetic field to generate Feshbach molecules, then turn on Raman coupling pulse with Gaussian envelop.

Momentum-resolved Raman spectroscopy of bound molecules in strongly interacting ultracold Fermi gas Ez : the energy split of the two Zeeman states : dispersion of the initial state : dispersion of the final state Z. Fu, P. Wang, L. Huang, Z. Meng, and J. Zhang, submitted (2012)

Spin-orbit coupling Feshbach molecules

Ultracold 87 Rb- 40 K Bose-Fermi mixture gases 2004. 9 Began to establish 2007.7.7 pm7:00, achieve 87 Rb BEC 87 Rb BEC 2007.8.30 pm11:00, using sympathetic cooling technology to achieve quantum degenerate of 40 K Fermi gas Integrated optical column density 75 50 25 Fermi-Dirac fit Experimental data Equivalent Maxwell- Boltzmann gas 0-800 -600-400 -200 0 200 400 600 800 40 K DFG Vertical coordinate/um

Experimental Setup of 87 Rb- 40 K Bose-Fermi Mixture

Schematic of experimental setup MOT1 MOT2 Push Beam Glass Cell Rb 40 K MOPA 1 MOPA 2 Rb master Laser Rb master Rb Laser Trapping master AOM1 Beam Laser Rb master AOM2 Repump Laser Beam Rb master Laser Rb Repump Laser K master Laser

Potassium 40 Dispenser 加热 2KCl+Ca 2K+CaCl 2 B. DeMarco, H. Rohner, and D. S. Jin, Rev. Sci. Instrum. 70, 1967 (1999). 0.0012% 40 K naturally Enriched 6% 40 K Nichrome container Electric Feedthrough Vacuum flange Dispenser Glove Box

Vacuum system 150l/s ion 40l/s ion turbo Rb reservoir Collection K dispenser science cell First Chamber: 1.2*10-7Pa Second Chamber: 2.9*10-9Pa

science cell Collection cell

Laser System

Rb cooling K cooling and repump Rb repumping

TA1 Injection locking slave laser TA2

Magnetic trap: Quadrupole-Ioffe configuration (Quic) trap Ioffe coil Bias coils Quadrupole coils

Control magnetic field current MOT2 QUIC trap Feshbach resonance

Experimental Sequence Transfer MOT1 to MOT2 Optical molasses and Optical pump Loading atoms into QUIC ( Quadrupole Ioffe Configuration) RF evaporation Time of flight and absorption image

Generation of quantum degenerate gases 87 Rb BEC 40 K DFG N=1.8*10 5 t f =25ms T/T F =0.56 N=5.5*10 5 t f =12ms Dezhi Xiong, Haixia Chen, Pengjun Wang, Xudong Yu, Feng Gao, Jing Zhang, Chin. Phys. Lett. 25, 843 (2008).

Transfer ultracold atoms from QUIC to the center of glass cell Distance: 11.8 mm Dezhi Xiong, Haixia Chen, Pengjun Wang, Zhengkun Fu, Jing Zhang, Opt. Express 18, 1649 (2010)

Loading of a crossed dipole trap P1=380mw P2=650mw 1064 nm singlefrequency laser W1=25um W2=33um

30 ms free expansion time. N=1.5 10 5

Future Plan BEC-BCS crossover with spin-orbit coupling Method: RF and Raman spectrum BEC-BCS crossover

Acknowledgement Experiment: Pengjun Wang Zhengkun Fu Shijie Chai Lianghui Huang Zengming Meng Cooperation (Theory) : Hui Zhai group (Tsinghua University ) : Zengqiang Yu Jiao Miao Swinburne University of Technology HuiHu, XiajiLiu Rice University Han Pu