Lead Zirconate Titanate Thick Films Fabricated by the Aerosol Deposition Method

Similar documents
Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Estimation of Gravel Size Distribution using Contact Time

PERFORMANCE OF HYDROTHERMAL PZT FILM ON HIGH INTENSITY OPERATION

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

The unification of gravity and electromagnetism.

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

京都 ATLAS meeting 田代. Friday, June 28, 13

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

RQ1A070AP. V DSS -12V R DS(on) (Max.) 14mW I D -7A P D 1.5W. Pch -12V -7A Power MOSFET. Datasheet 外観図 内部回路図 特長 1) 低オン抵抗 2) ゲート保護ダイオード内蔵

Product Specification

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Review of Electrohydrodynamics in Corona Devices in Electrophotography. Kazuhiro Mori

新技術説明会 ラマン分光 必見! AFM- ラマンによるナノイメージの世界 株式会社堀場製作所

Epitaxial piezoelectric heterostructures for ultrasound micro-transducers

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

シリコンベース新材料を用いた薄膜結晶太陽電池を目指して

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

Analysis of shale gas production performance by SGPE

Development of Advanced Simulation Methods for Solid Earth Simulations

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Hypocenter Distribution of Deep Low-frequency Tremors in Nankai Subduction Zone, Japan

Oxford, Vol. 9, pp (2004).. (3) 微小空間を活用する多相系有機合成反応 小林重太 森雄一朗 小林修 化学と工業 59, pp (2006).

Yutaka Shikano. Visualizing a Quantum State

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

Dielectric, Piezoelectric and Nonlinear Optical Properties of Lead Titanate based Ferroelectric Thin films

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

GRASS 入門 Introduction to GRASS GIS

TDK Lambda INSTRUCTION MANUAL. TDK Lambda A B 1/40

Jun Nishiyama Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

Kyoko Kagohara 1, Tomio Inazaki 2, Atsushi Urabe 3 and Yoshinori Miyachi 4 楮原京子

2011/12/25

Development of Deposition and Etching Technologies for Piezoelectric Elements for Ferroelectric MEMS

Method for making high-quality thin sections of native sulfur

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

ACOUSTIC EMISSION MEASUREMENTS ON PIEZOELECTRIC/ FERROELECTRIC MATERIALS

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

日本政府 ( 文部科学省 ) 奨学金留学生申請書

DEVELOPMENT OF HIGH-STRAIN LOW-HYSTERESIS ACTUATORS USING ELECTROSTRICTIVE LEAD MAGNESIUM NIOBATE (PMN)

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

HWS150A RELIABILITY DATA 信頼性データ

Illustrating SUSY breaking effects on various inflation models

二国間交流事業共同研究報告書 共同研究代表者所属 部局独立行政法人理化学研究所 創発物性科学研究センター

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

Taking an advantage of innovations in science and technology to develop MHEWS

Piezoelectric Vibration Energy Harvesting. Characteristics of Barium Titanate Laminates

Development of spectrally selective infrared emitter for thermophotovoltaic power generation

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

EU 向けに輸出される食品等に関する証明書の発行に係る事務処理要領 ( 国際 ) 通知に基づき 欧州連合 ( 以下 EU という ) へ輸出される食品及び飼料の証明書の発行条件及び手続きを定めるものとする

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

Piezoelectric Actuator for Micro Robot Used in Nanosatellite

SAFETY STANDARD APPROVED METALLIZED POLYPROPYLENE CAPACITOR 海外規格メタライズドポリプロピレンコンデンサ TYPE ECQUA

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

SML-811x/812x/813x Series

SENSORS and TRANSDUCERS

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

Effects of niobium doping on the piezoelectric properties of sol gel-derived lead zirconate titanate films

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

Trends of the National Spatial Data Infrastructure

IMECE SINGLE CRYSTAL PIEZOELECTRIC ACTUATORS FOR ADVANCED DEFORMABLE MIRRORS

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

7. CONCLUSIONS & SCOPE

Summer College on Plasma Physics August A Novel Charged Medium Consisting of Gas-Liquid Interfacial Plasmas

Relation of machine learning and renormalization group in Ising model

Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge

Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology

Ancient West Asian Civilization as a foundation of all modern civilization New Geological and Archaeological Academic Research in Japan

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

Technical report Approaches to Life Estimation of Electronic Circuits

飯塚毅博士の研究業績概要 飯塚毅博士はこれまで, 地質学 同位体年代学 地球化学的手法に基づいて, 固体地球の進化, 特に大陸地殻進化過程の解明に取り組んできた 同博士の研究は, 以下の 3 つよりなる

Effect of periodic control frequency on wake vortices around 2D hump

Chapter 2 Surface Acoustic Wave Motor Modeling and Motion Control

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

Digital Torque Meter ADT-C Series OPERATION MANUAL

Advanced. piezoelectric. materials. Science and technology. Edited by. Kenji Uchino WOODHEAD PUBLISHING. Oxford Cambridge Philadelphia New Delhi

井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される

観光の視点から見た民泊の現状 課題 展望

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

Structure design of micro touch sensor array

3rd International Symposium on Instrumentation Science and Technology

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

EDL analysis for "HAYABUSA" reentry and recovery operation はやぶさ カプセル帰還回収運用における EDL 解析

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

Transcription:

エアロゾル堆積法による PZT 厚膜 Lead Zirconate Titanate Thick Films Fabricated by the Aerosol Deposition Method 秋山善一 Yoshikazu AKIYAMA マキシムレベデフ * Maxim LEBEDEV * 明渡純 Jun AKEDO 要旨音速の加速微粒子を基板に衝突させ, 粒子の運動エネルギーを粒子と基板及び粒子間の接合エネルギーに変換する成膜方法であるエアロゾル堆積法 (ADM) を用いて,Si 基板上にPZT 圧電セラミックス厚膜 (10μm 以上 ) を作製した. 下部電極にPt/Ir/Ta 膜を用いて作製した積層アクチュエータ ( 形状 :Siダイアフラム6mm 6mm 65μm,PZT 膜 :4.5mm 4.5mm 13μm) は, 直流 50V 印加時に1.5μm, 共振状態 ( 周波数 22.4kHz, 振幅 8V 印加 ) で22μmなる極めて大きな変位を示す. この時のPZT 厚膜の圧電係数 (d 31 ) は, バルク燒結体の約 30% の値に相当する. ABSTRACT The lead zirconate titanate (PZT) thick films were fabricated by the aerosol deposition method (ADM), which is based on the impact phenomena of ultrafine particles on the substrate. The actuation properties of PZT on the Si membrane were investigated. For a 6 x 6 mm 2, 65-µm-thick Si membrane driven by a 4.5 x 4.5 mm 2, 13- µm-thick PZT layer, the deflections, which were 1.5 µm upon applying 50 V at nonresonance frequency and 22 µm upon applying 8 V at resonance frequency, were measured. The piezoelectric coefficient (d 31 ) of PZT thick film is approximately 30% of that of the bulk material. * 研究開発本部中央研究所 Research and Development Center, Research and Development Group * 独立行政法人産業技術総合研究所 National Institute of Advanced Industrial Science and Technology Ricoh Technical Report No.27 15 NOVEMBER, 2001

1.Introduction For new micro electromechanical systems (MEMS), such as microactuators, micropumps, ink-jet printer heads, flapperactuators for high density hard disk drive, ultrasonic devices and others, which need large strain and high speed response, it is necessary to produce dense piezoelectric films with thickness in the 1 to 50 µm range structured on a Si substrate. 1) There are some reports of the fabrication of PZT (lead zirconate titanate) thick films by the sol-gel, 2) sputtering 3) or hydrothermal synthesis 4) methods. However, PZT thick films produced by these methods usually have cracks, may easily peel from the substrates and fabrication takes a long process time. The etching of thick ceramics films by plasma etching 5), inductively coupling plasma etching 6), or reactive ion etching 7) is also difficult. PZT thick films fabricated by the screen printing method 8) have low density and PZT/Pt/Si structures can be damaged because of the long time of firing at temperatures higher than 800 C. Recently, the improvement of the screen printing method with the development of low-temperature sintering and a high-resistance electrode was demonstrated in ref. 9, but the piezoelectric properties of films derived by this method were not reported. For bulk PZT adhered to the Si membrane, it is difficult to ensure sufficient mechanical and electrical coupling between films, and to avoid the complexity of assembling. Thus, we can conclude that the structuring of thick (over 10 µm) PZT films on Si-based substrates by conventional methods is difficult. The principle of the aerosol deposition method (ADM) 1), which is a variant of the gas deposition method (GDM) 10) without vaporization of the material, is based on impact phenomena of ultrafine particles on the substrate. Submicron particles form an aerosol flow by mixing with carrier gas in an aerosol chamber. The aerosol flow is transported through the tube to a nozzle. This flow is accelerated and ejected from the nozzle into a deposition chamber. Ultrafine particles speed up to 300 m/s, 11) bombard the substrate and form the film. The structuring 12), ferroelectrical 13) and piezoelectrical 14) properties, and microstructure 15) of PZT thick films deposited by ADM have been previously reported. It is possible to form structures without etching. The density of such PZT thick films is more than 95% of bulk material. The temperature in ADM during deposition and annealing processes does not exceed 600 C. This low process temperature reduces the chemical reaction between PZT film and the substrate material, reducing damages of the structure. In this paper, we reported on the results of PZT thick film on a Si membrane by AMD. The actuation properties of such a membrane as it relates to micropumps and micromixer fabrication are presented as well. 2.Experimental Procedure The apparatus and details of our ADM deposition technique have been reported elsewhere. 13) The success of fabrication of a piezo on Si (POS) structure depends on many factors. The construction of a bottom electrode of the Si membrane is very important. This bottom electrode should: 1) have good adhesion force with the Si substrate and PZT during deposition, annealing and post treatment, and 2) function as an effective barrier layer for thermal diffusion between the PZT layer and the Si substrate. During deposition, some Si substrate damage take place. 13) Thus, the bottom electrode should: 3) prevent damage to the Si membrane as well. Taking into account the requirements mentioned above, to fabricate the bottom electrode Pt, Ir and Ta layers were sputtered on 525 µm-thick Si substrate using a DC-magnetron sputtering system. The sputtering conditions were as follows: sputtering gas Ar 100%, gas pressure 3.0 Pa, input power density 1.5 W/cm 2. The Si substrates temperature during spattering was 460 C. A square based (5x5 mm 2 ) PZT layer was deposited by ADM on this Pt/Ir/Ta/SiO 2 /Si substrate at substrates temperature 550ºC. The experimental parameters in ADM process are listed in Table I. The deposition rate of PZT film was 5-20 µm/min for an area of 5x5 mm 2. Sample was annealed at 600ºC for 1 h in air. Next, to obtain a membrane with sufficient thickness, part of the Si layer was etched by the wet-etching process using a potassium hydroxide aqueous solution. The base of the membrane had squared shape and was 7x7 mm 2. The Au electrode was Ricoh Technical Report No.27 16 NOVEMBER, 2001

sputtered on the surface of the PZT thick film. The PZT thick film was poled by applying a 60 kv/cm electrical field at 250 C for 30 min. Next, the membrane was fixed at a metal base plate to eliminate any undesired vibrations. Table I Process parameters Pressure in deposition chamber 2 Torr Size of nozzle orifice 5 0.3 mm2 Carrier gas He Consumption of carrier gas 2~6 l/min Average size of PZT particles 0.3 µm Substrate temperature 550 Annealing conditions 600 1h The membrane displacements were measured by a laser Doppler interferometer (LV-1610 & LV-0120, Ono-Sokki Co) with resolution 0.01 µm and by a laser displacement sensor (LA- 2420, Keyence Co.) with a resolution a 0.02 µm. treatment to prevent any chemical reaction between PZT and Si. The Ta layer (50nm thick) ensured the adhesion between the Ir and SiO 2 layer (1 µm thick) which was brought about by the thermal oxidation of the Si substrate. When the bottom electrode consists of Pt/Ta layers, The PZT thick film has some defects, which result from the chemical reaction of the lead element and the Si substrate. This substrate structure (Pt/Ir/Ta/SiO 2 /Si) ensures good adhesion during deposition and annealing. A total Pt/Ir/Ta layer thickness of more than 0.6 µm prevents damage to the Si substrate during the ADM deposition. 3-2 Actuation properties of POS structure The polarization-electrical field (P-E) hysteresis loop for annealed 14-µm-thick PZT film is presented in Fig.2. 3.Results and Discussion 3-1 Formation of PZT layer on substrate PZT thick films were successfully deposited on the platinumcoated Si substrate. A schematic and view of the POS structure are presented in Fig.1. Fig.2 Hysteresis loops of 14-mm-thick PZT thick film on Pt/Ir/Ta/Si substrate after annealing at 600o C for 1 h. Fig.1 Schematic of the POS structure. To ensure the good deposition of PZT on the Si substrate coated with Pt, a buffer Ir/Ta layer was introduced between Pt and Si. A 300-nm-thick Pt film was used as a bottom electrode. It provided good adhesion force with PZT thick films. The Ir layer (300 nm thick) was used as a thermal barrier layer during heat If an electrical field is applied between the top (Au) and bottom (Pt) electrodes of the PZT thick film presented in Fig.1, the PZT will shrink or expend in the horizontal direction. This movement of PZT leads to the deflection of the Si membrane in vertical direction. The responses of central point of the 7x7 mm 2, 170- µm -Si membrane driven by the 5x5 mm 2, 40-µm-PZT layer with unipolar rectangular electric pulses at different driven frequencies Ricoh Technical Report No.27 17 NOVEMBER, 2001

are shown in Fig.3. The amplitude of membrane displacement of membrane is 1.6 µm applying 0-+100 V and is constant in the frequency range up to 1 khz. There is no phase shift between the excitation pulse and the membrane response. The throw rate of the membrane is about 5 µs/µm and the deflection is proportional to the excitation impulse. The damped oscillation shown at the bottom signals in Fig.3 correspond to the resonance frequency of the membrane, 27 khz. The decay time for the damped oscillation for this membrane is 0.35 ms. 0-50 V, 100 Hz. The recorded displacement signals measured from the PZT side (2) and the Si side (3) have a phase shift of exactly 180, the shapes of the signals are the same and the amplitudes are 0.7 µm for both. This result shows that the PZT thick film does not peel from the substrate during deflections. Fig.4 Deflection of 7x7 mm 2, 100-mm-thick Si membrane driven by 10-mm-thick PZT layer (area 5 x 5 mm 2 ): 1) Sine wave drive signal 0-50 V, 100 Hz; 2) displacement measurement from PZT side; 3) displacement measurement from Si side. To evaluate the dynamic response in the wider frequency and excitation voltage ranges, measurements were carried out using sine-wave driving signal. The results of this measurement for a Fig.3 Dynamic response (without liquid) of 7x7 mm 2, 170- mm-thick Si membrane driven by 5x5 mm 2, 40-mmthick PZT thick film; displacements were measured at the central point. To confirm the existence of good electrical and mechanical contacts among the PZT thick film, Pt electrode and Si membrane, measurements of the deflection from the PZT side and the Si side were carried out. If some peeling occurred inside the PZT/Si structure, the PZT thick film and the membrane will not move together in the same direction, and thus the values of the displacements measured from the PZT side and the Si side will be different and recording signals will probably have a phase shift different from 180. In Fig.4, the deflections of a 7x7 mm 2, 100- µm-thick Si membrane driven by a 5x5 mm 2, 10 µm PZT layer are shown. The excitation signal (indicated as 1 in the Fig.4) was 6.0 x6.0 mm 2, 65-µm thick Si membrane driven by 4.5 x 4.5 mm 2, 13-µm-thick PZT thick film are presented in Fig.5. The amplitude of the deflection is proportional to applied voltage for the unipolar drive and is 1.5 µm when applying 0-52V at a nonresonance frequency of 1 Hz. The frequency dependence of the displacement for this membrane is presented in Fig.5(a). The phase shift between the excitation signal and the deflection was not observed up to 1 khz. The decrease of the peak amplitude deflection in the frequency range from 0.01 Hz-10 khz is less than 10%. The buckling of the membrane before the first resonance mode is shown in Fig.5(b). All membrane points are moving together in the same direction. The buckling shape is symmetrical and can be approximated to a cosine shape. Ricoh Technical Report No.27 18 NOVEMBER, 2001

sufficient to successfully realize micropump and/or micromoxer device driving with low (around 50 V) voltage. The high deflection amplitude of about 20 µm in the membrane at the resonance frequency of 22.4 khz by applying only 8 V (shown in Fig.5(a) indicates the good possibility of using the membrane for micromixers and other microactuators. 3-3 Comparison with simulation code A piezoelectric analysis model is fitted for a mechanical analysis model of a finite-element method (FEM) computer simulation using the ANSYSS Rev. 5 code. As the initial input parameters, the geometrical dimensions of the POS structure, the driven electrical field and the piezomechanical coefficients (i.e., piezoelectric coefficients d ij, mechanical compliance S ij and Young's modulus Y 11 ) of the PZT-5A bulk sample were used (Table II). Table II FEM simulation parameters. PZT 5A Symbol Unit Electric permitivity 33T/ 0-1700 11T/ 0-1730 Piezoelectric constant d 31 10-12 m/v -171 Fig.5 a):frequency dependence (measured at 40 V) and b) buckling shape (measured at 52 V, 100 Hz) of Si membrane (thickness is 65 mm, area 6.0 x 6.0 mm 2 ) driven by PZT thick film (thickness is 13 mm, area is 4.5 mm x 4.5 mm 2 ). d 33 10-12 m/v 374 d 15 10-12 m/v 584 Elastic compliance S 11 E 10-12 m2/n 16.4 S 12 E 10-12 m2/n -5.74 S 13 E 10-12 m2/n -7.22 S 33 E 10-12 m2/n 18.8 The amplitude of the membranes deflection is about 1-2 µm driven by voltage of 50 V in a wide frequency range and the high response indicate the possibility of using ADM in the fabrication of micropumps and micromixers for liquids. The actuation properties of our membrane are compatible with those of the same scale micropump 16-18) and micromixer 18) based on the bulk PZT material. In refs. 16 and17, the micropump has a deflection at a center point 0.3-0.8µm applying 170 V at nonresonance S 44 E 10-12 m2/n 47.5 S 66 E 10-12 m2/n 44.3 Poisson's ratio E - 0.31 density 10 3 kg/m 3 7.75 Silicon Young's modulus Y 10 10 N/m 2 19.6 Poisson's ratio - 0.32 density 10 3 kg/m 3 2.34 frequency. In ref. 18, this deflection is 1.3 µm when applying 120 V, 870 Hz. Our membrane has a deflection 1.5 µm at 52 V in the frequency range 0.01 Hz-10 khz. This deflection value is Ricoh Technical Report No.27 19 NOVEMBER, 2001

31 (1992) L1260. 8) H. D. Chen, K. R. Udayakumar, L. E. Cross, J. J. Bernstein and L. C. Niles: J. Appl. Phys., 77 (1995) 3349. 9) Y. Akiyama, K. Yamanaka, E. Fujisawa and Y. Kowata: Jpn. J. Appl. Phys. 38 (1999) 5524. 10) S.Kasyu, E. Fuchita, T. Manabe and C. Hayashi: Jpn. J. Appl. Phys. 23 (1984) L910. 11) M. Lebedev, J. Akedo, K. Mori, and T. Eiju: J. Vac. Sci. Technol. A. Fig.6 Calculation result by FEM code. 18 (2000) No 2, 563. 12) J. Akedo: J. Micro System Technology (in printing). Figure 6 shows the simulation of membrane buckling. The calculated displacement value was higher than the measured value. It appears that the PZT thick film fabricated by ADM has a piezoelectric coefficient d 31 about 30% of the bulk material and it has mechanical properties closed to that of the bulk material PZT-5A. 13) J. Akedo, N. Minami, K. Fukuda, M. Ichiki and R. Maeda: Ferroelectrics 231 (1999) No 7, 289. 14) J. Akedo and M. Lebedev: Appll. Phys. Lett. (submitted) 15) J. Akedo and M. Lebedev: Jpn. J. Appl. Phys. 38 (1999) No. 9b, 5397. 16) F. Forster, R. Badell, M. Afromowitz, M. Sharma and A Blanchard: Proceeding of the ASME Fluids Engineering Division, 1995, (ASME 4.Conclusions 1) PZT thick film can be directly deposited on the structured Si membrane by ADM. 2) The deposited PZT thick film can drive a thick (over 60 µm) Si membrane with symmetrical buckling. 3) The deflection amplitude is constant over a wide frequency range. The optimization of the structure of the bottom electrode should be studied in the future. The results indicate a possibility of fabricating micropump and micromixers devices using ADM. The aerosol deposition method will become a promising method for the fabrication of ferroelectric-coupled Si microactuators. IMECE, 1995) Vol. 234, p. 39. 17) L. Jang, C. Morris, N. Sharma, R. Bardell and F. Forster.. Proceedings of the ASME winter annual meeting 1999, MEMS- ASME 1999, Vol.1 p. 503. 18) H. Goto, Z. Yang, M. Matsumoto and Y. Yada: Proceedings of Int. Workshop on Microfactories, 1998, Japan (MEL 1999) p.250. References 1) J. Akedo: Oyo Buturi, 68, (1999) 44 [in Japanese]. 2) H. D. Chen, K. R. Udayakumar, C.J. Gaskey, L. E. Cross, J. J. Bernstein and L. C. Niles: J. Am. Ceram. Soc., 79 (1996) 2189. 3) S. Watanabe and T. Fujii: Apl. Phys. Lett. 66 (1995) 1481. 4) Y. Ohba, M. Miyauchi, T. Tsurumi, and M. Daimon: Jpn. J. Appl. Phys., 32 (1993) 4095. 5) M.R. Poor and C. B. Fledderman: J. Appl. Phys. 70 (1991), 3385. 6) C. W. Chung, J. Vac. Sci. Technol. B, 16 (1998) 1984. 7) K. Saito, J. H. Choi, T. Fukuda, and M. Ohue: Jpn. J. Appl. Phys., Ricoh Technical Report No.27 20 NOVEMBER, 2001