TEACHER GUIDE Extension Activity: Ecological Data

Similar documents
Sample. Location: Time: Date: Your Reference: My Reference: Ratho (EH28 8RL) th December 2013 XXXXXXXXXXXXXXX XXXX (XX)

Evaluation of Winter Weather in Wyoming based on Numerical Weather Modeling for Snow Fence System Design

Hurricane Hazards: Wind

Test of resistance to wind load under dynamic wind load. Roller shutter with built-in box, inspection from inside and foamed aluminium laths

ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION. A Collection of Learning Experiences WEATHER Weather Student Activity Book

OBSERVING WEATHER. Assemble appropriate equipment. It doesn t need to be fancy (though it can be), but there are a few basics you should invest in.

4.1 WEATHER DATA COLLECTION

Solving an Equation with One Radical

WEATHER. Wildfire Prevention Activity Book

Synoptic Code Symbols with Range of Values

Plethodontid Monitoring Protocol

GRADES 3-4. Maggie Allen

The grade 5 English science unit, Weather, meets the academic content standards set in the Korean curriculum, which state students should:

Climate Discovery Teacher s Guide

Air Masses, Fronts and Weather Systems

Marine Ecology Pacing Guide

Ch. 3: Weather Patterns

CT Science Standard 4.3 Erosion Water has a major role in shaping the earth s surface. Trail Guides

Weather Practice Test

STORM COWBOY. FANNIN COUNTY A.R.E.S. and R.A.C.E.S. Reference Manual SKYWARN MISSION

Table Hazards Identified by Jurisdictions in Local Plans

TORNADO IN A BOTTLE (1 Hour)

Name: Period: Air Masses Notes 7 Minutes Page 2 Watch the air masses video. Make sure you follow along.

CLIL Unit Student s worksheets

MS20 Laboratory Seawater Salinity and Density

Coastal Storm Potential

Weather Instruments, Maps and Charts

Weather Permitting/Meteorology. North Carolina Science Olympiad Coaches Clinic October 6, 2018 Michelle Hafey

7 - DE Website Document Weather Meteorology

III. Section 3.3 Vertical air motion can cause severe storms

Guided Notes Weather. Part 1: Weather Factors Temperature Humidity Air Pressure Winds Station Models

Study Guide. Earth Systems 1109 Weather Dynamics. Adult Basic Education Science. Prerequisites: Credit Value: 1

Ocean s Influence on Weather and Climate

EROSION RATES (1 Hour)

ea980r Digital Anemometer User Manual

Severe Weather Watches, Advisories & Warnings

Water in the Air. Pages 38-45

5E's. View the video clip:

BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN. SC.F The student knows that living things are different but share similar structures.

Students will work in small groups to collect detailed data about a variety of living things in the study area.

Investigation 3: Wind Exploration

GPS Measurement Protocol

Post-Show. Weather. After the Show. Traveling Science Shows

Hurricane Glossary. Southeast Coastal Ocean Observing Regional Association. Definitions selected & adapted from weather.com

Weather. Weather Patterns

GOING WITH THE FLOW (1 Hour)

Topic 1 The Atmosphere and Atmospheric Variables

Unit: Weather and Climate General Task Air pressure and Storms

Grade 5 Hands on Science Weathering, Erosion and Deposition

according to and water. High atmospheric pressure - Cold dry air is other air so it remains close to the earth, giving weather.

Class Notes: Weather

WEATHER COMPONENTS. Earth and Space Science - Weather Systems. Temperature 07/12/2014

WS-9035U Wireless 433 MHz Radio-controlled Weather Station. Instruction Manual

STUDENT NAME DATE ID GRADE 5 SCIENCE

3rd GRADE MINIMUM CONTENTS UNIT 17: AIR

Supplement D Weather Instruments Review

Ecology Chapter Teacher Sheet. Activity #1: Graphing San Diego Tides

ASSESSMENT CHART FOR INVESTIGATIONS 1 AND 2 STUDENT NAME

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Final Examination. Part A Answer ONLY TWELVE QUESTIONS in Part A. (Each question is 3 points)

Advisory #35 Briefing 630 PM EDT Thursday October 06, 2016

Weather Watching. DELTA SCIENCE READER Overview Before Reading Guide the Reading After Reading WEATHER WATCHING OVERVIEW

Hurricanes form over warm ocean water.

Tracking the Salt Front

Grade 6 Science. The University of Texas at Austin, Continuing & Innovative Education K-16 Education Center 1

Curriculum Map. Essential Questions (Questions for students that reflect the skills we want them to learn) What are the science skills?

1. The and the act as one interdependent system. 2. Why do we have to study both to understand the relationship?

Weather Middle School Teacher Instructions and Activity

Erosion and Deposition along Rivers and Seashores - Part 1: Modeling in the Classroom

HURRICANE IRENE. CONFERENCE CALL BRIEFING SLIDES Saturday August 27, :30 AM

Station A. 1. In the Northern Hemisphere, the general direction of the flow of the jet stream is toward the: a. north b. east c.

WEATHER WATCH. As a Student Scientist, here is how you will use the Engineering Design Cycle

Guided Notes Weather. Part 2: Meteorology Air Masses Fronts Weather Maps Storms Storm Preparation

A Prepared Marylander Creates a Resilient Maryland

Course Objectives. School Name: Date:

CHAPTER 6 & 7 VOCABULARY

TCAP Study Guide: Part 1

E.T. - A LOCAL WAY OF LEARNING E-56

Section 13-1: Thunderstorms

The Marine Environment

Surface Circulation in the North Atlantic & off of Southern California: Two Models

SPEARFISH FIRE DEPARTMENT POLICIES AND PROCEDURES

Weather data investigation

ANSWER KEY LEAD PREP SOUTHEAST

Thunderstorms form from rising moist air.

Weather and Climate Basics

4 Forecasting Weather

A bright flash that is produced due to electrical discharge and occurs during a thunderstorm.

Advance Preparation Students should be comfortable using the internet and Microsoft Excel.

Section 2.1 Ocean Basins. - Has helped determine where ocean basins are located. - Tectonic plates move changing the position of the continents.

Weather and Climate Basics

NOS 10 Scientific Explanations

Storms. 3. Storm types 4. Coastal Sectors 5. Sorm Location and Seasonality 6. Storm Severity 7. Storm Frequency and grouping 8. The design storm event

b. The boundary between two different air masses is called a.

4 Forecasting Weather

Subtropical Storm Ana

Build a Model of Global Air Movement

3 Severe Weather. Critical Thinking

STUDENT NAME DATE ID GRADE 5 SCIENCE

How to use the MMU-EGS Meteorological field instruments

Transcription:

TEACHER GUIDE Extension Activity: Ecological Data Time Required: About 3 hours plus any travel time. This activity is largely intended for science projects or special classes. Structure: This extension activity will help students to draw meaningful comparisons among multiple plankton tows. Students learn to obtain basic qualitative and quantitative environmental data that will help them to understand how planktonic organisms are affected by their environment. Students also learn to quantify their sampling effort and sample yields to aid in comparisons of bulk trends among plankton tows. Finally, students learn to quantify the composition of their plankton samples to help in recognizing trends in the diversity and abundance of certain planktonic organisms. This extension activity is suggested to be used as a follow up to the students initial plankton tow observations. Materials Included: 1. STUDENT HANDOUT Beaufort Wind Scale 2. STUDENT WORKSHEETS Extension: Ecological Data a. Environmental Data b. Sampling Data 3. Petri dishes 4. Plastic droppers 5. Dissecting needles 6. Motic digital dissecting microscope 7. Plankton sieve 8. Squeeze bottle Materials Needed for Extension Activity: 1. Compass 2. Watch 3. Local tide / lunar chart 4. 2 3 gal bucket with rope affixed to handle (length long enough to safely retrieve water sample from sampling vessel/location) 5. Thermometer 6. Salinity meter (e.g., refractometer, salinity probe, aquarium hydrometer, etc.) 7. Tape measure 8. Calculator 9. 5 ml graduated cylinder Advance Preparation: 1. Make copies of student handout and worksheets. 2. Have students collect background information of sampling location, such as mean weather conditions, 24 hour precipitation data and anthropogenic / historical influences on how area has

changed over time. Local precipitation data can be found on National Weather Service and US Geological Survey websites, such as http://www.prh.noaa.gov/hnl/pages/hydrology.php and http://hi.water.usgs.gov/ for Hawaii locations. Teachers should familiarize themselves and their students with the location and of any potential hazards, such as rip currents, reefs, water quality, etc. 3. Go over instructional procedures with students using mock exercises, so that operations go smoothly in the field. Instructional Procedures: 1. Environmental Data worksheet: 1) Have the students sketch a map of their sampling location, noting any prominent features (i.e., stream mouths, coves, points, reefs, etc.). Ensure that students use a compass to indicate direction on their map. Students should also include a scale bar that provides some rough estimation of distance. Have students plot their sampling transect. 2) Have the students write a brief habitat description of their sampling location. Share with your students any applicable background information on the area, such as mean weather conditions, anthropogenic influences and any other historical factors. 3) Have the students fill in the table of environmental data based on observations made as a class or group. Ensure that units are included where applicable. i. Date & Time use watch ii. Wind speed refer to Beaufort Wind Scale handout 1. Include gust speed if applicable iii. Wind direction use compass to determine direction that wind is blowing from. Releasing light weight and low impact debris, such as leaves, into the wind may assist observations. iv. Air temperature Make sure thermometer bulb is DRY when measuring. (Wet bulbs will usually give a lower reading due to evaporative cooling and are used to calculate humidity, not air temperature). v. Past 24 hour precipitation inform students of this value that you obtained in advance (if available) vi. Fetch a sample of water representative of the sampling transect using the bucket and affixed rope, for salinity and water temperature data use hydrometer with thermometer vii. Time/height of nearest low/high tide use local tide chart viii. Date/phase of last/next lunar quarter use lunar (tide) chart 2. Sampling Data worksheet: 1) Community Structure The goal here is to describe the composition of the plankton community in terms of relative abundances.

i. Have students take a small subsample of the plankton and randomly observe microscopically. Students should identify as many organisms into the listed categories as time allows and calculate their relative abundances. ii. Save all subsamples when done do not discard! Will use for biovolume measurement below. iii. You may also wish to combine class data to increase the statistical strength of estimates. 2) Sampling Effort The goal here is to calculate the volume of seawater sampled in the plankton tow. Explain to students how the formula is based upon the geometric volume of a cylinder, in which the area of the plankton net represents the bases and the towing distance represents the height. Guide students along in filling out the table. 1. Measure the radius of the net opening in meters. 2. Calculate the area of the net opening, given area = πr 2. Answer will be in meters squared. 3. Measure the total distance towed in meters. a. If towing offshore on a boat where distance is hard to measure, distance can be calculated by multiplying towing speed with towing duration. i. Towing speed can be calculated by marking and measuring a distance along the length of the boat. At towing speed, drop environmentally friendly debris (e.g., leaves, flowers, etc.) at the forward mark and time how long it takes to reach the back mark. Convert value to meters per minute. ii. Time the total duration of plankton tow in minutes. iii. Multiply towing speed with towing duration to obtain towing distance. Answer should be in meters. 4. Multiply the area of the net opening with the total distance towed. Answer will be in cubic meters. 5. Convert value to liters, given that 1 cubic meter = 1000 L. 3) Plankton Biovolume The goal here is to determine the biovolume of the plankton sample and to relate it to the volume of seawater sampled. Guide students with the following steps to fill in the table. i. Have students place their plankton subsample into a sieve with the rest of the sample, using a squeeze bottle filled with seawater to assist the transfer. Sieve out as much water as possible from the plankton. ii. Add 2.5 ml of water to a graduated cylinder (volume water). iii. Slowly add plankton to the graduated cylinder and measure the new volume (volume water + plankton). If the new volume exceeds 5 ml, remove some

plankton so that the new volume is less than 5 ml. Repeat for the rest of the plankton sample, recording all volumes. iv. Subtract the original volume(s) (2.5 ml) from the new volume(s) to obtain the plankton biovolume. v. Convert plankton biovolume to liters, given 1000 ml = 1 L. vi. Divide the plankton biovolume by the sampling volume and multiply by 100. This is the percentage of the sampled seawater that is composed of plankton, on a volume per volume basis. In other words, this is the concentration of planktonic organisms in the sampled seawater. 3. Suggest follow up ideas or experiments that STUDENTS can do (and students can do them!).

STUDENT HANDOUT Beaufort Wind Scale Developed in 1805 by Sir Francis Beaufort of England Force 0 Wind (Knots) Less than 1 WMO Classification On the Water Appearance of Wind Effects On Land Calm Sea surface smooth and mirror-like Calm, smoke rises vertically 1 1-3 Light Air Scaly ripples, no foam crests 2 4-6 Light Breeze 3 7-10 Gentle Breeze 4 11-16 Moderate Breeze 5 17-21 Fresh Breeze 6 22-27 Strong Breeze 7 28-33 Near Gale 8 34-40 Gale 9 41-47 Strong Gale 10 48-55 Storm 11 56-63 Violent Storm 12 64+ Hurricane Small wavelets, crests glassy, no breaking Large wavelets, crests begin to break, scattered whitecaps Small waves 1-4 ft. becoming longer, numerous whitecaps Moderate waves 4-8 ft taking longer form, many whitecaps, some spray Larger waves 8-13 ft, whitecaps common, more spray Sea heaps up, waves 13-19 ft, white foam streaks off breakers Moderately high (18-25 ft) waves of greater length, edges of crests begin to break into spindrift, foam blown in streaks High waves (23-32 ft), sea begins to roll, dense streaks of foam, spray may reduce visibility Very high waves (29-41 ft) with overhanging crests, sea white with densely blown foam, heavy rolling, lowered visibility Exceptionally high (37-52 ft) waves, foam patches cover sea, visibility more reduced Air filled with foam, waves over 45 ft, sea completely white with driving spray, visibility greatly reduced Source: http://www.spc.noaa.gov/faq/tornado/beaufort.html Smoke drift indicates wind direction, still wind vanes Wind felt on face, leaves rustle, vanes begin to move Leaves and small twigs constantly moving, light flags extended Dust, leaves, and loose paper lifted, small tree branches move Small trees in leaf begin to sway Larger tree branches moving, whistling in wires Whole trees moving, resistance felt walking against wind Twigs breaking off trees, generally impedes progress Slight structural damage occurs, slate blows off roofs Seldom experienced on land, trees broken or uprooted, "considerable structural damage"

STUDENT WORKSHEET Extension: Ecological Data Environmental Data Sketch a map of your sampling location noting prominent features, such as stream mouths, embayments, reefs, etc. Be sure to use a compass to indicate direction on your map. Plot your towing track on the map. Briefly describe this habitat. Is it open ocean or coastal? If coastal, specify habitat type (i.e., estuarine, coral reef, exposed, protected, etc.). Is the shoreline developed or vegetated? Fill in the following table: Date: Wind speed: Air temperature: Water temperature: Time/height of nearest low tide: Tide phase (flood, slack, ebb): Date/phase of last lunar quarter: General weather description: Time: Wind direction: 24 h Precipitation: Salinity: Time/height of nearest high tide: Tow depth: Date/phase of next lunar quarter:

Sampling Effort Net radius (m) (Radius = 0.5diameter) Net area (m 2 ) (Area = πr 2 ) Towing distance (m) Volume sampled (m 3 ) (Vol = Area x Distance) Volume sampled (L) (1 m 3 = 1000 L) Plankton Biovolume Volume water (ml) Volume water + plankton (ml) Volume plankton (ml) (Vol. plankton+water Vol. water ) Volume plankton (L) (1000 ml = 1 L) % Plankton in Seawater (Vol. plankton /Vol. sampled x 100)