Theory of Ordinary Differential Equations. Stability and Bifurcation I. John A. Burns

Similar documents
Intermediate Differential Equations. Stability and Bifurcation II. John A. Burns

Intermediate Differential Equations. John A. Burns

Introduction to Differential Equations

1 The pendulum equation

Math 232, Final Test, 20 March 2007

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry

MATH 1700 FINAL SPRING MOON

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( )

2D-Volterra-Lotka Modeling For 2 Species

Theory of Ordinary Differential Equations. Stability and Bifurcation II. John A. Burns

Dynamical Systems. 1.0 Ordinary Differential Equations. 2.0 Dynamical Systems

Modeling the Immune System W9. Ordinary Differential Equations as Macroscopic Modeling Tool

Systems of Ordinary Differential Equations

THETA-LOGISTIC PREDATOR PREY

Observer Design for Ecological Monitoring

Section 5.4 (Systems of Linear Differential Equation); 9.5 Eigenvalues and Eigenvectors, cont d

Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd

Stability of Nonlinear Systems An Introduction

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

ECE504: Lecture 8. D. Richard Brown III. Worcester Polytechnic Institute. 28-Oct-2008

Hello everyone, Best, Josh

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

Calculus II Practice Test Questions for Chapter , 9.6, Page 1 of 9

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide

A Stability Analysis on Models of Cooperative and Competitive Species

= F ( x; µ) (1) where x is a 2-dimensional vector, µ is a parameter, and F :

STABILITY. Phase portraits and local stability

Department of Mathematics IIT Guwahati

Practice Midterm Solutions

Math 128A Spring 2003 Week 12 Solutions

Ordinary Differential Equations

Systems of Ordinary Differential Equations

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

M445: Heat equation with sources

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm.

Global dynamics of a predator-prey system with Holling type II functional response

The incomplete gamma functions. Notes by G.J.O. Jameson. These notes incorporate the Math. Gazette article [Jam1], with some extra material.

Gerardo Zavala. Math 388. Predator-Prey Models

second order Runge-Kutta time scheme is a good compromise for solving ODEs unstable for oscillators

Introduction to Dynamical Systems Basic Concepts of Dynamics

Math Ordinary Differential Equations

The Fractional-order SIR and SIRS Epidemic Models with Variable Population Size

Indeterminate Forms and L Hospital s Rule

Separable Differential Equations

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

Some commonly encountered sets and their notations

THE SEPARATRIX FOR A SECOND ORDER ORDINARY DIFFERENTIAL EQUATION OR A 2 2 SYSTEM OF FIRST ORDER ODE WHICH ALLOWS A PHASE PLANE QUANTITATIVE ANALYSIS

APPLICATIONS OF DIFFERENTIATION

ZEROS OF THE JOST FUNCTION FOR A CLASS OF EXPONENTIALLY DECAYING POTENTIALS. 1. Introduction

Pattern formation and Turing instability

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

10 Back to planar nonlinear systems

Intermediate Differential Equations Review and Basic Ideas

Vibrating Strings and Heat Flow

BIFURCATION FOR NON LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH SINGULAR PERTURBATION

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Linear Equations in Linear Algebra

Engineering Applications of Differential equations

Chapter 7. Nonlinear Systems. 7.1 Introduction

THE ROSENZWEIG-MACARTHUR PREDATOR-PREY MODEL

Ordinary Differential Equations: Initial Value problems (IVP)

Math 331 Homework Assignment Chapter 7 Page 1 of 9

ES.1803 Topic 19 Notes Jeremy Orloff. 19 Variation of parameters; exponential inputs; Euler s method

MATH 215/255 Solutions to Additional Practice Problems April dy dt

Ordinary Differential Equations II

Respect your friends! Do not distract anyone by chatting with people around you Be considerate of others in class.

This theorem guarantees solutions to many problems you will encounter. exists, then f ( c)

Ordinary Differential Equations: Homework 2

Lab 5: Nonlinear Systems

POPULATION DYNAMICS: TWO SPECIES MODELS; Susceptible Infected Recovered (SIR) MODEL. If they co-exist in the same environment:

Limit Cycles II. Prof. Ned Wingreen MOL 410/510. How to prove a closed orbit exists?

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material.

Bifurcation Analysis of Prey-Predator Model with Harvested Predator

Homework 2 Solutions, MAP 6505, Fall 18. = lim

3. Fundamentals of Lyapunov Theory

Lecture 5: Rules of Differentiation. First Order Derivatives

APPLICATIONS OF DIFFERENTIATION


MA 138: Calculus II for the Life Sciences

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

F and G have continuous second-order derivatives. Assume Equation (1.1) possesses an equilibrium point (x*,y*) so that

Using Lyapunov Theory I

AN EXTENDED ROSENZWEIG-MACARTHUR MODEL OF A TRITROPHIC FOOD CHAIN. Nicole Rocco

A Mixed Lyapunov-Max-Plus Algebra Approach to the Stability Problem for a two Species Ecosystem Modeled with Timed Petri Nets

Interactions. Yuan Gao. Spring Applied Mathematics University of Washington

Review of Power Series

The Method of Undetermined Coefficients.

Chapter 5: Limits, Continuity, and Differentiability

Feedback Stabilization of Inverted Pendulum Models

Solution: In standard form (i.e. y + P (t)y = Q(t)) we have y t y = cos(t)

DIFFERENTIATION RULES

Homework 2. Due Friday, July We studied the logistic equation in class as a model of population growth. It is given by dn dt = rn 1 N

Research Article The Stability of Gauss Model Having One-Prey and Two-Predators

7 Planar systems of linear ODE

Continuous time population models

Section 2.2 Solutions to Separable Equations

APPM 2360: Midterm exam 1 February 15, 2017

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology

G : Statistical Mechanics

Key words and phrases. Bifurcation, Difference Equations, Fixed Points, Predator - Prey System, Stability.

Transcription:

Theory of Ordinary Differential Equations Stability and Bifurcation I John A. Burns Center for Optimal Design And Control Interdisciplinary Center for Applied Mathematics Virginia Polytechnic Institute and State University Blacksburg, Virginia 46-53 MATH 545 - FALL

Initial Value Problem (IVP) { (Σ) (IC) ( t) f t, ( t), q ( t ) f ( t,,q) : D A solution to the initial value problem (IVP) is a vector valued differentiable function ( t) : ( a, b) defined on a connected interval (a, b) such that () t ( a, b), () ( t ), n n n m n (3) ( t, ( t)) D, for all t ( a, b), (3) ( t) satisfies ( ) for all t ( a, b).

Consider Global in Time Solutions t > d ( t ) ( t ), () dt d ( t ) ( t ), () dt t () t t () t l ( t), t r ( t), t t t

Consider Global in Time Solutions t > l () 5 l ( t), t t 5 r () -5 - r ( t), t t -5 - -3 - - 3 4

Stability of Solutions and Equilibrium

Stability of Solutions (Σ) ( t) f t, ( t), q f( t,, q) :[, ) n n m n ASSUME SOLUTIONS EXIST FOR ALL t > t

Equilibrium (SOLUTIONS) (Σ) ( t) f t, ( t), q ( t) ( t) = ( q) a constant vector (depends on q) e e e e ( t) f t,, q) e TO FIND EQUILIBRIUM: FIND ALL VECTORS f t,, ) e q ( t) = ( q) e e e e SATISFYING

( t) 3 ( t) Eamples f t, 3 e ( t) t( t) f t, t e t t t ( ) ( )[4 [ ( )] ] f t, [4 ],, 3 e e e

Eample 4. a d dt ( t) ( t) ( t) a( t) ([ ( t)] [ ( t)] ) ( t) f a ([ ] [ ] ) e

Eample 4. ( t) ( t) ( t) a ( t) ( t) [ ( t)] 3 f a [ ] 3 ( a [ ] ) or ( a [ ] )

Eample 4. ( a [ ] ) or ( a [ ] ) a a e a a e a e e

Eample 4. f(, y) y ( y, ) : 3 f(, y) a y (, y) : f (, y) y 3 (, y) : f(, y) a y (, y) : y a 3

Eample 4.3 ( t) ( t) ( t) ( t)( a [ ( t)] ) f ( a [ ] ) ( a [ ] ) or ( a [ ] )

Eample 4.3 ( a [ ] ) a a > a

Eample NS d t t y t t y t y t dt ( ) ( ) 3 ( ) ( [ ( )] [ ( )] ) ( ) d y t y t t y t t dt ( ) ( ) ( [ ( )] [ ( )] ) ( ) FIND ALL OF THE EQUILIBRIUM HOMEWORK

) ( R p p ) ( ) ( ) ( t p t p K r t p dt d LE ), ), ( ( ) ( ) ( ) ( K r t p f t p t p K r t p dt d p p K r K r p f ),, ( Logistics Equation

Analytical Solution 9 Kp p ( t, r, K) p K p e r t K 8 7 6 5 4 3 5 5

Initial p : < p <, r.963, K 9, 5 4.8 p, p 5,.6.4..8.6.4. p p 5 75 p p p 5 5 5 K

Equilibrium States LE d dt p( t) r p( t) p( t) K EQUILIBRIUM STATES ARE CONSTANT SOLUTIONS p ( t) p( t) p e a constant p ( t) r K p p e e p ( t) p e or p e K p e ( t) p e p e ( t) p e K

Equilibrium States p e or UNSTABLE p e K STABLE 4.8.6.4. K.8.6.4. 5 5 5

First Order Linear ( t) a( t) at () t e 5 ( t) a( t) f ( ( t), a) 4.5 4 3.5 3 a =. a =.5.5.5.5 a = a = -.5 a = -..5.5.5

Equilibrium e =, a < : Stable a f (, a) a < e.8.6.4. -. e -.4 -.6 -.8 -.5.5.5 3 3.5 4 4.5 5

Equilibrium e =, a > : Unstable a f (, a) a > e 5 5 e -5 - -5.5.5.5

Equilibrium e =, a = : Stable a f (, a) a = e.8.6.4. -. -.4 -.6 e e.5. e..5 e e -.8 -.5.5.5 3 3.5 4 4.5 5

Let φ( ) be a given solution to the differential equation. The solution φ( ) is called stable in the sense of Lyapunov (or simply stable) if for any any ε > and any t [, + ), there is a (ε, t ) > such that if (t) is any solution with initial condition satisfying then We say that φ( ) is uniformly stable if φ( ) is stable and (ε, t )= (ε ) can be taken to be independent of t. The solution φ( ) is said to be asymptotically stable if. The solution φ( ) is stable and lim t () ( t).. T t Stability ( t) f t, ( t) ( t ) ( t ) (, t ), t () ( t), t t.

Stable Solution (t) (t) t t

Asymptotically Stable Solution STABLE and lim ( t) ( t) t (t) (t) t t

Stable and Asymptotically Stable (t) (t) t t (t) (t) t t

Stability WHY SUCH A GENERAL DEFINITION? WHY NOT JUST LIMIT STABILITY TO EQUILIBRIUM? d dt ( t) ( t) ( t) ( t) EQUILIBRIUM e PERIODIC SOLUTIONS () t sin( t) r () t cos( t)

Predator - Prey Models Vito Volterra Model (95) Alfred Lotka Model (96) t () y() t ab,, c, d d ( t ) ( t ) ab y ( t ) dt d dt THINK OF SHARKS AND SHARK FOOD Numbers of prey Numbers of predators Parameters y( t) y( t) c d( t) t ()

Symplectic Methods > WRONG Eplicit Euler Implicit Euler Symplectic WRONG CORRECT > >

Eample 4. a >... AGAIN ( t) y( t) y( t) a( t) ([ ( t)] [ y( t)] ) y( t) d dt ( t) ( t) ( t) a( t) ([ ( t)] [ ( t)] ) ( t) f a ([ ] [ ] )

Eample 4. a = a ( y, ) : f(, y) y f(, y) a ( y ) y (, y) : f (, y) y (, y) : f(, y) a ( y ) y

Eample 4. a =... AGAIN a () t sin( t) () t cos( t) ([ ( t)] [ ( t)] ) PERIODIC SOLUTION

Eample 4. a =... AGAIN () t sin( t) () t cos( t) a

Eample 4. a =... AGAIN a LIMIT CYCLE

Lorenz System d ( t ) ( ( t ) ( t )) dt d q ( t ) ( t ) ( t )( 3( t )) dt d 3( t ) 3( t ) ( t ) ( t ) dt f(,, 3, q, q, q3) ( ) f (,,, q, q, q ) ( ) f ( ( t), q) 3 3 3 f3(,, 3, q, q, q3) 3 f(,, 3, q) ( ) f ( ( t), q) f (,,, q) ( ) 3 3 f3(,, 3, q) 3

Lorenz System f(,, 3, q) ( ) f (, q) f (,,, q) ( ) 3 3 f3(,, 3, q) 3 f (,,, q) ( ) 3 f (,,, q) ( ) 3 3 f(,, 3, q) f(,, 3, q) f (,,, q) 3 f(,, 3, q) 3 f(,, 3, q) 3 f (,,, q) 3 3

f3(,, 3, ) Lorenz System f (,,, q) 3 3 3 q f 3 (,,, ) f (,,, q) q 3 3 f(, q) f(, q) f(, q) 3 J (, q) f(, q) f(, q) f(, q) 3 f3(, q) f3(, q) f3(, q) 3 J(, q) 3

Lorenz System f(, q) f(, q) f(, q) 3 J(, q) f(, q) f(, q) f(, q) 3 3 f3(, q) f3(, q) f3(, q) 3 ALL ENTRIES ARE CONTINUOUS FOR ALL (,,, q, q, q ) 3 3 Theorem (n). IS OK

Lorenz System f(,, 3, q) ( ) f (, q) f (,,, q) ( ) Equilibrium 3 3 f3(,, 3, q) 3 ( ) ( ) 3 3 ( ) ( ) ( ) ( )

A 3D Eample ( t) Re ( t) d ( t ). Re ( t ) dt 3( t). 3( t) EQUILIBRIUM 3 e a b ( t) [ ( t)] [ ( t)] [ 3( t)] a c ( t) b c ( t) 3 THERE ARE MORE BUT MORE IMPORTANTLY.

Eample 4.4 ( t) [ ( t)] 3 f ( t, ) [ ] 3 e 3 ( t) [ ( t)], () t () t [ ]

Eample 4.4 t () t t () t SLOW DECAY

Eponential Decay ( t) a( t) () t e t t () t

Eponential Asymptotic Stable ( t) f t, ( t) Let φ( ) be a given solution to the differential equation. The solution φ( ) is said to be eponentially asymptotically stable if. The solution is asymptotically stable, and. There is a > such that for any >, there is a M() > such that if then ( t ) ( t ) t t M e t t ( t t ( ) ( ) ( ) ),. Uniform eponentially asymptotically stable is the same with. replaced by uniform asymptotically stable.

Stability of Equilibrium ( t) f ( t) f () t e e e ( t; ) e () t e e t? HOW DO WE KNOW IF e (t) IS ASYMPTOTICALLY STABLE?

Linear Constant Coefficient System ( t) A( t) A a a a a a a a a a,,, n,,, n n, n, n, n e n e When is the equilibrium e (t)= stable?

Constant Coefficient System (L) ( t) A( t) Let,, 3, n be the eigenvalues of A i.e. det( ) k I A i (Re( ), Im( ) ) k k k k k k k The following two theorems may be found in: Richard K. Miller and Anthony N. Michel, Ordinary Differential Equations, Academic Press, 98. (see pages 79 86)

Linear Stability Results Theorem: If Re( k ) < for all k=,,. n, then the zero equilibrium e (t) = of (L) is eponentially asymptotically stable. In particular, there eist M and > such that t ( t) Me, for all t. Theorem: If there is one eigenvalue p of A such that Re( p ) >, then the zero equilibrium e (t)= of (L) is unstable. In particular, for any > there eists and initial condition satisfying < such that the solution (t; ) to (L) satisfies () = and lim ( t; ) t

Linearization About Equilibrium ( t) f ( t) f ( ) : n n f f(,,... n ) f(,,... n ) n fn(,,... n ) is a C function d dt ( t) ( t) f( ( t), ( t),... n( t)) ( t) ( t) f( ( t), ( t),... n( t)) f n ( t) n ( t) fn( ( t), ( t),... n( t))

Linearization About Equilibrium f e e n T J f ( ) e f (,,... ) f (,,... ) f (,,... ) n f (,,... ) f (,,... ) f (,,... ) n f (,,... ) f (,,... ) f (,,... ) n n n n n n n n n n n n n J f ( ) e is called the Jacobian matri of f( ) evaluated at e

Linearization About Equilibrium J f ( ) J f( ) e e f ( ) f ( ) f ( ) n f ( ) f ( ) f ( ) n fn( ) fn( ) f ( ) n n e BASIC STABILITY RESULTS

Fundamental Stability Theorem Let,, 3, n be the eigenvalues of J f ( ) e, i.e. det( I J ( )) k f e i (Re( ), Im( ) ) k k k k k k k Theorem S: If Re( k ) < for all k=,,. n, then the equilibrium solution e() t e is an asymptotically stable equilibrium for the non-linear system ( t) f ( t). In particular, there eist > such that if (), then lim ( t). e t e

Non-Stability Theorem Theorem S: If there is one eigenvalue p such that Re( p ) >, then e() t e is an unstable equilibrium for the non-linear system ( t) f ( t). The two theorems above may be found in: Richard K. Miller and Anthony N. Michel, Ordinary Differential Equations, Academic Press, 98. (see pages 58 53) and Earl A. Coddington and Norman Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, 955. (see pages 34 3)

Eample 4.5 d dt ( t) ( t) 3 ( t) ( t) ( t) ( t) ( t) ( t) ( t) 3 f d dt f ( t) 3 ( t) ( t) ( t) ( t) ( t) ( t) ( t) 3

Eample 4.5 d dt ( t) 3 ( t) ( t) ( t) ( t) ( t) ( t) ( t) 3 f ( ) 3 or

Eample 4.5 J J f( ) J 3 f( ) f J 3 f J 3 f( ) f J 3.566.566 Theorem S IMPLIES is asymptotically stable Theorem S IMPLIES is not stable

Eample 4. a ( t) y( t) y( t) a( t) ([ ( t)] [ y( t)] ) y( t) d dt ( t) ( t) ( t) a( t) ([ ( t)] [ ( t)] ) ( t) f a ([ ] [ ] )

Eample 4. a f a ([ ] [ ] ) J f ( ) J f a [ ] 3[ ] J f ( ) J f a EIGENVALUES ARE GIVEN BY a det a

Eample 4. a 4a a implies 4 a is real and 4a 4a 4a 4 a implies 4 a is real and 4a 4a 4a

Eample 4. a a implies 4 a 4 i 4 i Re( ) Re( ) / Re( ) IN ALL CASES Theorem S IMPLIES is not stable

Eample 4.6 d ( t) [ ( t)] ( t) 3( t) ( t ) ( t ) ( t ) dt 3( t) [ ( t)] 3( t) f(,, 3) [ ] 3 f f(,, 3) 3 f3(,, 3) [ ] 3 and [ ] [ ] 3 [ ] [ ] 3 [ ]

Eample 4.6 and 3 [ ] [] 3 [ ] [ ] 8 6 EQUILIBRIUM 3 e EQUILIBRIUM 3 6 e

Eample 4.6 J f 3 4 EQUILIBRIUM 3 e EQUILIBRIUM 3 6 e f J 4 f J 4 6 8

Eample 4.6 4 f f J J 4 6 8.4856.48.75i.48.75i 3.7664.999i.7664.999i.538 Theorem S IMPLIES 3 e are both unstable 3 3 6 e

Eample 4. AGAIN ( t) ( t) ( t) a ( t) ( t) [ ( t)] 3 f a [ ] 3 ( a [ ] ) or ( a [ ] )

Eample 4. AGAIN or ( a [ ] ) a ( a [ ] ) a a a a

Eample 4. AGAIN f a [ ] 3 J f ( ) J f a 3[ ] a

Eample 4. AGAIN: a J f ( ) J f a 3[ ] J f ( ) J f a

Eample 4. AGAIN: a > f a [ ] 3 J f ( ) J f a 3[ ] a a

Eample 4. AGAIN: a > J f ( ) J f a 3[ ] J f ( ) J f a

Eample 4. AGAIN: a > J f ( ) J f a 3[ ] a J ( ) J f a f a

Eample 4. AGAIN: a > J f ( ) J f a 3[ ] a J f ( ) J f a a

Eample 4.: a <, =[ ] T J f ( ) J f a a a det ( ) a a a

Eample 4.: a <, =[ ] T 4( a) 4a 4 a implies 4 a is real and 4a 4a 4a Theorem S IMPLIES is asymptotically stable

Eample 4.: a <, =[ ] T a 4 implies 4a 4a 4a Theorem S IMPLIES is asymptotically stable

Eample 4.: a <, =[ ] T 4( a) 4a a 4 implies ( 4 a) and hence 4 a is comple ( 4 a) ( 4 a) ii i i i i real( ) real( )

Eample 4.: a <, =[ ] T IN ALL CASES WHEN a real( ) and real( ) Theorem S IMPLIES is asymptotically stable

Eample 4.: a >, =[ ] T ( t) ( t) ( t) a ( t) ( t) [ ( t)] 3 f a [ ] 3 a a

Eample 4.: a >, =[ ] T J f ( ) J f a a a det ( ) a a a

Eample 4.: a >, =[ ] T a 4( a) 4a 4a 4a 4a Theorem S IMPLIES is unstable

Eample 4.: a >, =[ a ] T J f ( ) J f a 3[ ] a J f a a a a

Eample 4.: a >, =[ a ] T a det ( ) a a 4( a) 8a 8 a implies 8 a is real and 8a 8a 8a

Eample 4.: a >, =[ a ] T 4( a) 8a a implies 8 a = 8 8a 8a 8 a implies ( 8 a) 8 a is comple so ( 8 a) ( 8 a) ii

Eample 4.: a >, =[ i i i i real( ) real( ) IN ALL CASES WHEN a real( ) and real( ) Theorem S IMPLIES a is asymptotically stable a a ] T SAME

Eample 4.: a =, =[ ] T 4( a) 4a a Theorems S and S FAIL Stability of is not known

Bifurcation Diagram: Eample 4. a < R a STABLE STABLE UNSTABLE a > a WHEN a = WE STILL DO NOT KNOW ABOUT THE STABAILITY OF STABLE a

Enzyme Kinetics k k S E S E P E k LAW of Mass Action: The rate of a reaction is proportional to the product of the concentrations of the reactants. s [ S], e [ E], c [ S E], p [ P] s( t) k e( t) s( t) k c( t), e( t) k e( t) s( t) ( k k ) c( t) c( t) k e( t) s( t) ( k k ) c( t), p( t) k c( t) s() s, e() e, c(), p()

Enzyme Kinetics s( t) k e( t) s( t) k c( t), e( t) k e( t) s( t) ( k k ) c( t) c( t) k e( t) s( t) ( k k ) c( t), p( t) k c( t) s() s, e() e, c(), p() Conserved quantity: e( t) c( t) e() c() e c( t) e( t) e( t) e c( t) p( t) k c( t) p( t) k c( ) d t

Enzyme Kinetics s( t) k e( t) s( t) k c( t), e( t) k e( t) s( t) ( k k ) c( t) c( t) k e( t) s( t) ( k k ) c( t), p( t) k c( t) s() s, e() e, c(), p() s( t) k e( t) s( t) k c( t), s() s e( t) [ e c( t)] s( t) k [ e c( t)] s( t) k c( t), s() s s( t) k e s( t) [ k s( t) k ] c( t), s() s

Enzyme Kinetics c( t) k e( t) s( t) ( k k ) c( t), c() e( t) [ e c( t)] c( t) k [ e c( t)] s( t) ( k k ) c( t), c() c( t) k e s( t) [ k s( t) k k ] c( t), c() s( t) k e s( t) [ k s( t) k ] c( t), s() s c( t) k e s( t) [ k s( t) k k ] c( t), c()

Dimensionless Version s( t) k e s( t) [ k s( t) k ] c( t), s() s c( t) k e s( t) [ k s( t) k k ] c( t), c() k e t or t / k e u() st () s s( / k e ) s v() ct () e c( / k e ) e DERIVE DIFFERENTIAL EQUATIONS FOR u( ) and v( )

Dimensionless Version u() st () s s( / k e ) s d d s( / ke ) s( / ke ) s() t u() d d s k e s k e s d d c( / ke ) c( / ke ) c() t v() d d e k e e k e e

Dimensionless Version d d s( / ke ) s( / ke ) s() t u() d d s k e s k e s s( t) k e s( t) [ k s( t) k ] c( t) st () kes () t [ ks( t) k ] c( t) k s e k s e k s e s( t) s( t) s( t) k c( t) [ ] k s e s s k s e u( ) v( ) st ( ) s ct ( ) e s( / ke s c( / ke e ) ) d s( t) s( t) s( t) k c( t) u( ) [ ] d k e s s s k s e u u k v ks ( ) [ ( ) ] ( )

Dimensionless Version LIKEWISE d k u u u v d k s ( ) ( ) [ ( ) ] ( ) e d k k d v( ) u( ) [ u( ) ] v( ) s k s DEFINE k k k k k K e k s k s k s s s m, K, K k k k k k s k s k s

Dimensionless Version d d u ( ) u ( ) [ u ( ) K ] v ( ), u () d d v ( ) u ( ) [ u ( ) K ] v ( ), v () k e t or t / k e k k k k k K e k s k s k s s s m, K, K m k k k Michaelis constant

Dimensionless Version d d u ( ) u ( ) [ u ( ) K ] v ( ), u () d d v ( t ) u ( ) [ u ( ) K ] v ( ), v () d d u( ) K u( ) u( ) v( ) v( ) K v( ) u( ) v( ) e s

Dimensionless Version d d u ( ) u ( ) [ u ( ) K ] v ( ), u () d d v ( t ) u ( ) [ u ( ) K ] v ( ), v () d d u ( ) u ( ) [ u ( ) K ] v ( ), u () d d v ( t ) u ( ) [ u ( ) K ] v ( ), v () SIMULATE USING PPLANE7

Dimensionless Version

Dimensionless Version

? STABILITY?

Stability: Enzyme Kinetics d d u ( ) u ( ) [ u ( ) K ] v ( ), u () d d v ( t ) u ( ) [ u ( ) K ] v ( ), v () d d u( ) K u( ) u( ) v( ) v( ) K v( ) u( ) v( ) K u uv K v uv

Stability: Enzyme Kinetics K u uv K v uv u ( K ) v uv u Kv uv v k ks u v ONLY EQUILIBRIUM

Stability: Enzyme Kinetics d d u( ) K u( ) u( ) v( ) v( ) K v( ) u( ) v( ) d d ( ) K ( ) ( ) ( ) ( ) / K / ( ) ( ) ( ) / f ( K ) K

Stability: Enzyme Kinetics f ( K ) K J ( K ) f( ) Jf K J ( K ) f( ) f K o J

Stability: Enzyme Kinetics J ( K ) f( ) f K o J EIGENVALUES ARE GIVEN BY ( K ) K det ( K / ) / ( K/ ) [( K/ )] 4 / / k k k k k k, K k s k s k s k s k s

Stability: Enzyme Kinetics ( K/ ) [( K/ )] 4 / / k ks [( K / )] 4 K / [ K / )] 4( K ) / K/ [ K/ )] 4 / [ K/ )] 4 / [ K/ )] [( K / )] 4 / [( K / )] [( K / )]

Stability: Enzyme Kinetics ( K/ ) [( K/ )] 4 / / ( K/ ) [( K/ )] 4 / / Theorem S IMPLIES is asymptotically stable